scholarly journals Role of prefrontal cortex during Sudoku task: fNIRS study

2020 ◽  
Vol 11 (1) ◽  
pp. 419-427
Author(s):  
Patil Ashlesh ◽  
Kishore K. Deepak ◽  
Kochhar Kanwal Preet

AbstractBackgroundSudoku is a popular cognitively stimulating leisure-time activity. Many studies have been directed toward finding an algorithm to solve Sudoku, but the investigation of the neural substrates involved in Sudoku has been challenging.MethodsSudoku task was divided into two steps to understand the differential function of the prefrontal cortex (PFC) while applying heuristic rules. PFC activity was recorded at 16 optode locations using functional near infrared spectroscopy. Classical two-way analysis of variance as well as general linear model-based approach was used to analyze the data from 28 noise-free recordings obtained from right-handed participants.ResultsPost hoc analysis showed a significant increase in oxyhemoglobin concentrations and decrease in deoxyhemoglobin concentrations at all 16 optode locations during step 1 (3 × 3 subgrids) and step 2 (easy level 9 × 9 Sudoku) when compared with the rest (p < 0.0001). Contrasting the step 2 – step 1 revealed that medial regions of PFC were preferentially activated.ConclusionBoth the medial and lateral regions of PFC are activated during Sudoku task. However, the medial regions of PFC play a differential role, especially when we consider searching and selecting the heuristic rules. Thus, Sudoku may be used for cognitive remediation training in neuropsychiatric disorders involving PFC.

2020 ◽  
Author(s):  
Patil Ashlesh ◽  
K K Deepak ◽  
Kochhar Kanwal Preet

AbstractSudoku is a popular leisure time activity that involves no math, but is based on logic based combinatorial number placement in a matrix. Many studies have been dedicated towards finding an algorithm to solve Sudoku but investigation of the neural substrates involved in Sudoku has been challenging. It is difficult to measure the brain activity during 9×9 Sudoku using traditional fMRI technique due to the procedural constraints. 16 optodes fNIRS (functional near infrared spectroscopy) forms an excellent alternative to study the activity of prefrontal cortex (PFC) during Sudoku task. Sudoku task was divided into two steps to understand the differential function of the PFC while applying heuristic rules. Classical two-way ANOVA as well as General Linear Model based approach was used to analyze the data. 28-noise free recording from right-handed participants revealed increased activity in all 16 optode locations during step 1 (3 × 3 subgrids) and step 2 (easy level 9×9 Sudoku) as compared to rest. Contrasting the step2-step1 revealed that medial regions of PFC were preferentially activated. These findings suggest the role of these regions, while applying multiple heuristic rules to solve 9×9 Sudoku puzzle.Graphical abstractHighlightsThis is first fNIRS study that tried to unravel the role of PFC during Sudoku task.Uniquely divided the Sudoku task into two steps to understand the differential role of PFC while applying multiple heuristic rules.Both the medial and lateral regions of PFC are activated during Sudoku task.However, the medial regions of PFC play a differential role, especially when we consider the row and the column rule of Sudoku.


Author(s):  
Paola Pinti ◽  
Andrea Devoto ◽  
Isobel Greenhalgh ◽  
Ilias Tachtsidis ◽  
Paul W Burgess ◽  
...  

Abstract Anterior prefrontal cortex (PFC, Brodmann area 10) activations are often, but not always, found in neuroimaging studies investigating deception, and the precise role of this area remains unclear. To explore the role of the PFC in face-to-face deception, we invited pairs of participants to play a card game involving lying and lie detection while we used functional near infrared spectroscopy (fNIRS) to record brain activity in the PFC. Participants could win points for successfully lying about the value of their cards or for detecting lies. We contrasted patterns of brain activation when the participants either told the truth or lied, when they were either forced into this or did so voluntarily and when they either succeeded or failed to detect a lie. Activation in the anterior PFC was found in both lie production and detection, unrelated to reward. Analysis of cross-brain activation patterns between participants identified areas of the PFC where the lead player’s brain activity synchronized their partner’s later brain activity. These results suggest that during situations that involve close interpersonal interaction, the anterior PFC supports processing widely involved in deception, possibly relating to the demands of monitoring one’s own and other people’s behaviour.


2018 ◽  
Vol 8 (11) ◽  
pp. e01116 ◽  
Author(s):  
Hadis Dashtestani ◽  
Rachel Zaragoza ◽  
Riley Kermanian ◽  
Kristine M. Knutson ◽  
Milton Halem ◽  
...  

Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000013217
Author(s):  
Inbal Maidan ◽  
Roni Hacham ◽  
Ira Galperin ◽  
Nir Giladi ◽  
Roee Holtzer ◽  
...  

Background and Objectives:Functional Near-Infrared Spectroscopy (fNIRS) studies provide direct evidence to the important role of the prefrontal cortex (PFC) during walking in aging and Parkinson's disease (PD). Most studies mainly explored mean HbO2 levels, while moment-to-moment variability measures have been rarely investigated. Variability measures can inform on flexibility that is imperative for adaptive function. We hypothesized that patients with PD will show less variability in HbO2 signals during walking compared to healthy controls.Methods:206 participants, 57 healthy controls (age: 68.9±1.0 years; 27 women) and 149 idiopathic PD patients (age: 69.8±0.6 years, 50 women, disease duration: 8.27±5.51 years) performed usual walking and dual-task walking (serial 3 subtractions) with an fNIRS system placed on the forehead. HbO2 variability was calculated using the standard deviation (SD), range, and mean detrended time series of fNIRS-derived HbO2 signal evaluated during each walking task. HbO2 variability was compared between groups and between walking tasks using mixed model analyses.Results:Higher variability (SD, range, mean detrended time series) was observed during dual-task walking, compared to usual walking (p<0.025), but this was derived from the differences within the healthy control group (group X task interaction: p<0.007). On the other hand, task repetition demonstrated reduced variability in healthy controls but increased variability in patients with PD (interaction group*walk-repetition: p<0.048). The MDS-UPDRS motor score correlated with HbO2 range (r=0.142, p=0.050) and HbO2 SD (r=0.173, p=0.018) during usual walking in all participants.Discussion:In this study, we suggest a new way to interpret changes in HbO2 variability. We relate increased HbO2 variability to flexible adaptation to environmental challenges and decreased HbO2 variability to the stability of performance. Our results show that both are limited in PD however, further investigation of these concepts is required. Moreover, HbO2 variability measures are an important aspect of brain function that adds new insights into the role of PFC during walking with aging and PD.Classification of Evidence:This study provides Class III evidence that patients with PD have more variability within Hb02 signals during usual-walking, compared to healthy controls, but not during dual-task walking.


2019 ◽  
Author(s):  
Shannon Burns ◽  
Lianne N. Barnes ◽  
Ian A. McCulloh ◽  
Munqith M. Dagher ◽  
Emily B. Falk ◽  
...  

The large majority of social neuroscience research uses WEIRD populations – participants from Western, educated, industrialized, rich, and democratic locations. This makes it difficult to claim whether neuropsychological functions are universal or culture specific. In this study, we demonstrate one approach to addressing the imbalance by using portable neuroscience equipment in a study of persuasion conducted in Jordan with an Arabic-speaking sample. Participants were shown persuasive videos on various health and safety topics while their brain activity was measured using functional near infrared spectroscopy (fNIRS). Self-reported persuasiveness ratings for each video were then recorded. Consistent with previous research conducted with American subjects, this work found that activity in the dorsomedial and ventromedial prefrontal cortex predicted how persuasive participants found the videos and how much they intended to engage in the messages’ endorsed behaviors. Further, activity in the left ventrolateral prefrontal cortex was associated with persuasiveness ratings, but only in participants for whom the message was personally relevant. Implications for these results on the understanding of the brain basis of persuasion and on future directions for neuroimaging in diverse populations are discussed.


2021 ◽  
Vol 11 (6) ◽  
pp. 701
Author(s):  
Cheng-Hsuan Chen ◽  
Kuo-Kai Shyu ◽  
Cheng-Kai Lu ◽  
Chi-Wen Jao ◽  
Po-Lei Lee

The sense of smell is one of the most important organs in humans, and olfactory imaging can detect signals in the anterior orbital frontal lobe. This study assessed olfactory stimuli using support vector machines (SVMs) with signals from functional near-infrared spectroscopy (fNIRS) data obtained from the prefrontal cortex. These data included odor stimuli and air state, which triggered the hemodynamic response function (HRF), determined from variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels; photoplethysmography (PPG) of two wavelengths (raw optical red and near-infrared data); and the ratios of data from two optical datasets. We adopted three SVM kernel functions (i.e., linear, quadratic, and cubic) to analyze signals and compare their performance with the HRF and PPG signals. The results revealed that oxyHb yielded the most efficient single-signal data with a quadratic kernel function, and a combination of HRF and PPG signals yielded the most efficient multi-signal data with the cubic function. Our results revealed superior SVM analysis of HRFs for classifying odor and air status using fNIRS data during olfaction in humans. Furthermore, the olfactory stimulation can be accurately classified by using quadratic and cubic kernel functions in SVM, even for an individual participant data set.


Healthcare ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 412
Author(s):  
Li Cong ◽  
Hideki Miyaguchi ◽  
Chinami Ishizuki

Evidence shows that second language (L2) learning affects cognitive function. Here in this work, we compared brain activation in native speakers of Mandarin (L1) who speak Japanese (L2) between and within two groups (high and low L2 ability) to determine the effect of L2 ability in L1 and L2 speaking tasks, and to map brain regions involved in both tasks. The brain activation during task performance was determined using prefrontal cortex blood flow as a proxy, measured by functional near-infrared spectroscopy (fNIRS). People with low L2 ability showed much more brain activation when speaking L2 than when speaking L1. People with high L2 ability showed high-level brain activation when speaking either L2 or L1. Almost the same high-level brain activation was observed in both ability groups when speaking L2. The high level of activation in people with high L2 ability when speaking either L2 or L1 suggested strong inhibition of the non-spoken language. A wider area of brain activation in people with low compared with high L2 ability when speaking L2 is considered to be attributed to the cognitive load involved in code-switching L1 to L2 with strong inhibition of L1 and the cognitive load involved in using L2.


Sign in / Sign up

Export Citation Format

Share Document