scholarly journals Nuclear Quadrupole Coupling in the Rotational Spectrum of Thionyl Chloride

1992 ◽  
Vol 47 (11) ◽  
pp. 1150-1152 ◽  
Author(s):  
Ilona Merke ◽  
Helmut Dreizler

Abstract We report on the analysis of the chlorine quadrupole hyperfine structure of thionyl chloride, S035Cl37 Cl, observed with a molecular beam microwave Fourier transform spectrometer

1993 ◽  
Vol 48 (12) ◽  
pp. 1219-1222 ◽  
Author(s):  
U. Kretschmer ◽  
H. Dreizler

Abstract We investigated the 33S nuclear quadrupole coupling of thiazole- 33S in natural abundance by molecular beam Fourier transform microwave spectroscopy. In addition the 14N nuclear quadrupole coupling could be analyzed with high precision. We derived the rotational constants A = 8529.29268 (70) MHz, B = 5427.47098 MHz, and C = 3315.21676 (26) MHz, quartic centrifugal distortion constants and the quadrupole coupling constants of 33S χaa = 7.1708 (61) MHz and χbb= -26.1749 (69) MHz and of 14N χ aa = -2.7411 (61) MHz and χbb = 0.0767 (69) MHz.


1994 ◽  
Vol 49 (11) ◽  
pp. 1059-1062
Author(s):  
J. Gripp ◽  
U. Kretschmer ◽  
H. Dreizler

Abstract We investigated the 33S nuclear quadrupole coupling in the rotational spectrum of isothiazole in natural abundance by molecular beam Fourier transform microwave spectroscopy. In addition the 14N nuclear quadrupole coupling could be analyzed with high precision. We derived the rotational constants A = 8275.51880(80) MHz, B = 5767.06181 (40) MHz, and C = 3396.85702(36) MHz, quartic centrifugal distortion constants, and the quadrupole coupling constants χaa (33S) = 8.7015 (57) MHz, χbb(33S) = -32.9696(60) MHz, χaa(14N) = 1.0732(47) MHz and χbb(14N) = -2.4753(46) MHz.


1991 ◽  
Vol 46 (11) ◽  
pp. 989-992 ◽  
Author(s):  
N. Heineking ◽  
J.-U. Grabow ◽  
K. Vormann ◽  
W. Stahl

AbstractNuclear quadrupole hyperfine structures have been resolved in the rotational spectrum of thionyl aniline, C6H5NSO, using pulsed molecular beam microwave Fourier transform spectroscopy. High precision nuclear quadrupole coupling constants, rotational and quartic centrifugal distortion constants have been determined from the analysis of 12 low-J transitions. Coupling constants are χaa = + 1.5730(14) MHz and (χbb - χcc)= -5.6499(13) MHz. rotational constants are A-4026.72i5(4) MHz, B = 860.64732(8) MHz, and C = 709.52027(7) MHz, and centrifugal distortion constants are ΔJ - 36.6(5) Hz, ΔJK= -107.5(20) Hz, ΔK = 703(68) Hz, δJ = 8.1(5) Hz, and δK=111(19) Hz (representation I' used).


1993 ◽  
Vol 48 (11) ◽  
pp. 1093-1101 ◽  
Author(s):  
C. Thomsen ◽  
H. Dreizler

Abstract The rotational spectrum of 2,6-lutidine, (CH3)2C5H3N, has been recorded between 6 and 26.5 GHz using pulsed molecular beam microwave Fourier transform spectroscopy. The rotational constants are A = 3509.7139(84) MHz, B = 1906.8639(101) MHz, and C = 1254.6215(14) MHz, the barrier to internal rotation of the two methyl groups is V3 = 1.1752 kJ/mol, their moments of inertia were found to be Iα = 3.0808(9) uÅ2 . The nitrogen nuclear quadrupole constants are χaa = +1.600(5) MHz, χbb = -4.572(3) MHz and χcc = +2.972(5) MHz.


1988 ◽  
Vol 43 (4) ◽  
pp. 385-387
Author(s):  
Ch. Keussen ◽  
U. Andresen ◽  
H. Dreizler

Abstract As the technique of microwave Fourier transform (MWFT) spectroscopy was improved in the recent years we give a reinvestigation of the 14N nuclear quadrupole hyperfine structure of nitroso­ benzene.


1988 ◽  
Vol 43 (7) ◽  
pp. 657-661 ◽  
Author(s):  
N. Heineking ◽  
H. Dreizler

AbstractWe redetermined the rotational and the chlorine-35 and nitrogen-14 nuclear quadrupole coupling constants of 3-chloropyridine. The values are A = 5839.5330(12) MHz, B = 1604.1875(6) MHz, and C = 1258.3121 (5) MHz for the rotational constants, and χaa(Cl) = - 72.255(19) MHz, χbb(Cl) = + 38.500(13) MHz, χcc(Cl) = + 33.755(23) MHz and χaa(N) = - 0.009(13) MHz, χbb(N) = - 3.473(10) MHz, χCC(N) = + 3.482(16) MHz for the chlorine-35 and nitrogen-14 nuclear quadrupole coupling constants, respectively.Application of double resonance modulation technique is shown to greatly simplify the assign­ment of hyperfine structure components even of weak rotational transitions.


1992 ◽  
Vol 47 (3) ◽  
pp. 511-514 ◽  
Author(s):  
N. Heineking ◽  
H. Dreizler

Abstract The two-nuclei quadrupole hyperfine structure of four 2Q1-subbranch transitions of deuteroisothiocyanic acid, DNCS, has been resolved and analyzed by use of a waveguide microwave Fourier transform spectrometer. The analysis yielded one previously unknown quadrupole coupling constant ( χ- ≡ χbb-χcc) for both nitrogen ( χ-N = +27.6(11) kHz) and deuterium X-D = +175.8(11) kHz). Taking into account the results from earlier work on HNCS, DNCS, HNCO, and DNCO, the orientations of the principal axis systems of the two quadrupole coupling tensors could be calculated. It appears that while the deuterium tensor is aligned to the D-N internuclear axis as expected, the nitrogen tensor is tilted away from the bisector of the DNC angle by 13° towards the NCS chain


1995 ◽  
Vol 50 (7) ◽  
pp. 666-668 ◽  
Author(s):  
U. Kretschmer

The rotational spectrum of the 33S dimethylsulfoxide in natural isotopic abundance has been studied using molecular beam Fourier transform microwave spectroscopy. Rotational and quadrupole coupling constants could be extracted from the spectra. They were found to be A = 7017.5456(16) MHz, B = 6894.5117(17) MHz, C=4218.14115(84) MHz, χaa-15.720(18) MHz, χbb= -17.045(23), and χcc = 32.765(25) MHz.


1995 ◽  
Vol 50 (2-3) ◽  
pp. 131-136 ◽  
Author(s):  
H. Hartwig ◽  
U. Kretschmer ◽  
H. Dreizler

Abstract We investigated the rotational spectrum of 32S, 33S dimethyl disulfide in natural abundance by molecular beam Fourier transform microwave spectroscopy. We were able to determine the com­plete 33S quadrupole coupling tensor, the rotational and centrifugal distortion constants and the internal rotation parameters of the two methyl tops. The rotational constants were found to be A = 8113.8847(23) MHz, B = 2800.6203(30) MHz and C = 2557.2245 (32) MHz. The results are compared with former publications.


Sign in / Sign up

Export Citation Format

Share Document