Relationships Among Performance of Lateral Cutting Maneuver From Lateral Sliding and Hip Extension and Abduction Motions, Ground Reaction Force, and Body Center of Mass Height

2013 ◽  
Vol 27 (7) ◽  
pp. 1851-1860 ◽  
Author(s):  
Yohei Shimokochi ◽  
Daishi Ide ◽  
Masahiro Kokubu ◽  
Tetsu Nakaoji

2017 ◽  
Vol 33 (1) ◽  
pp. 69-75 ◽  
Author(s):  
Gaspare Pavei ◽  
Elena Seminati ◽  
Jorge L.L. Storniolo ◽  
Leonardo A. Peyré-Tartaruga

We compared running mechanics parameters determined from ground reaction force (GRF) measurements with estimated forces obtained from double differentiation of kinematic (K) data from motion analysis in a broad spectrum of running speeds (1.94–5.56 m⋅s–1). Data were collected through a force-instrumented treadmill and compared at different sampling frequencies (900 and 300 Hz for GRF, 300 and 100 Hz for K). Vertical force peak, shape, and impulse were similar between K methods and GRF. Contact time, flight time, and vertical stiffness (kvert) obtained from K showed the same trend as GRF with differences < 5%, whereas leg stiffness (kleg) was not correctly computed by kinematics. The results revealed that the main vertical GRF parameters can be computed by the double differentiation of the body center of mass properly calculated by motion analysis. The present model provides an alternative accessible method for determining temporal and kinetic parameters of running without an instrumented treadmill.



Author(s):  
Aurélien Patoz ◽  
Thibault Lussiana ◽  
Bastiaan Breine ◽  
Cyrille Gindre ◽  
Davide Malatesta


2020 ◽  
pp. 1-10
Author(s):  
Matthew K. Seeley ◽  
Seong Jun Son ◽  
Hyunsoo Kim ◽  
J. Ty Hopkins

Context: Patellofemoral pain (PFP) is often categorized by researchers and clinicians using subjective self-reported PFP characteristics; however, this practice might mask important differences in movement biomechanics between PFP patients. Objective: To determine whether biomechanical differences exist during a high-demand multiplanar movement task for PFP patients with similar self-reported PFP characteristics but different quadriceps activation levels. Design: Cross-sectional design. Setting: Biomechanics laboratory. Participants: A total of 15 quadriceps deficient and 15 quadriceps functional (QF) PFP patients with similar self-reported PFP characteristics. Intervention: In total, 5 trials of a high-demand multiplanar land, cut, and jump movement task were performed. Main Outcome Measures: Biomechanics were compared at each percentile of the ground contact phase of the movement task (α = .05) between the quadriceps deficient and QF groups. Biomechanical variables included (1) whole-body center of mass, trunk, hip, knee, and ankle kinematics; (2) hip, knee, and ankle kinetics; and (3) ground reaction forces. Results: The QF patients exhibited increased ground reaction force, joint torque, and movement, relative to the quadriceps deficient patients. The QF patients exhibited: (1) up to 90, 60, and 35 N more vertical, posterior, and medial ground reaction force at various times of the ground contact phase; (2) up to 4° more knee flexion during ground contact and up to 4° more plantarflexion and hip extension during the latter parts of ground contact; and (3) up to 26, 21, and 48 N·m more plantarflexion, knee extension, and hip extension torque, respectively, at various times of ground contact. Conclusions: PFP patients with similar self-reported PFP characteristics exhibit different movement biomechanics, and these differences depend upon quadriceps activation levels. These differences are important because movement biomechanics affect injury risk and athletic performance. In addition, these biomechanical differences indicate that different therapeutic interventions may be needed for PFP patients with similar self-reported PFP characteristics.



2002 ◽  
Vol 205 (10) ◽  
pp. 1485-1494 ◽  
Author(s):  
Thomas J. Roberts ◽  
Jeffrey A. Scales

SUMMARYWe tested the hypothesis that the hindlimb muscles of wild turkeys(Meleagris gallopavo) can produce maximal power during running accelerations. The mechanical power developed during single running steps was calculated from force-plate and high-speed video measurements as turkeys accelerated over a trackway. Steady-speed running steps and accelerations were compared to determine how turkeys alter their running mechanics from a low-power to a high-power gait. During maximal accelerations, turkeys eliminated two features of running mechanics that are characteristic of steady-speed running: (i) they produced purely propulsive horizontal ground reaction forces, with no braking forces, and (ii) they produced purely positive work during stance, with no decrease in the mechanical energy of the body during the step. The braking and propulsive forces ordinarily developed during steady-speed running are important for balance because they align the ground reaction force vector with the center of mass. Increases in acceleration in turkeys correlated with decreases in the angle of limb protraction at toe-down and increases in the angle of limb retraction at toe-off. These kinematic changes allow turkeys to maintain the alignment of the center of mass and ground reaction force vector during accelerations when large propulsive forces result in a forward-directed ground reaction force. During the highest accelerations, turkeys produced exclusively positive mechanical power. The measured power output during acceleration divided by the total hindlimb muscle mass yielded estimates of peak instantaneous power output in excess of 400 W kg-1 hindlimb muscle mass. This value exceeds estimates of peak instantaneous power output of turkey muscle fibers. The mean power developed during the entire stance phase increased from approximately zero during steady-speed runs to more than 150 W kg-1muscle during the highest accelerations. The high power outputs observed during accelerations suggest that elastic energy storage and recovery may redistribute muscle power during acceleration. Elastic mechanisms may expand the functional range of muscle contractile elements in running animals by allowing muscles to vary their mechanical function from force-producing struts during steady-speed running to power-producing motors during acceleration.



2013 ◽  
Vol 29 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Hiroaki Hobara ◽  
Koh Inoue ◽  
Kazuyuki Kanosue

Understanding the degree of leg stiffness during human movement would provide important information that may be used for injury prevention. In the current study, we investigated bilateral differences in leg stiffness during one-legged hopping. Ten male participants performed one-legged hopping in place, matching metronome beats at 1.5, 2.2, and 3.0 Hz. Based on a spring-mass model, we calculated leg stiffness, which is defined as the ratio of maximal ground reaction force to maximum center of mass displacement at the middle of the stance phase, measured from vertical ground reaction force. In all hopping frequency settings, there was no significant difference in leg stiffness between legs. Although not statistically significant, asymmetry was the greatest at 1.5 Hz, followed by 2.2 and 3.0 Hz for all dependent variables. Furthermore, the number of subjects with an asymmetry greater than the 10% criterion was larger at 1.5 Hz than those at 2.2 and 3.0 Hz. These results will assist in the formulation of treatment-specific training regimes and rehabilitation programs for lower extremity injuries.



2004 ◽  
Vol 04 (03) ◽  
pp. 283-303 ◽  
Author(s):  
CHRISTOPHER S. PAN ◽  
KIMBERLY M. MILLER ◽  
SHARON CHIOU ◽  
JOHN Z. WU

Stilts are elevated tools that are frequently used by construction workers to raise workers 18 to 40 inches above the ground without the burden of erecting scaffolding or a ladder. Some previous studies indicated that construction workers perceive an increased risk of injury when working on stilts. However, no in-depth biomechanical analyses have been conducted to examine the fall risks associated with the use of stilts. The objective of this study is to evaluate a computer-simulation stilts model. Three construction workers were recruited for walking tasks on 24-inch stilts. The model was evaluated using whole body center of mass and ground reaction forces. A PEAK™ motion system and two Kistler™ force platforms were used to collect data on both kinetic and kinematic measures. Inverse- and direct-dynamics simulations were performed using a model developed using commercial software — ADAMS and LifeMOD. For three coordinates (X, Y, Z) of the center of mass, the results of univariate analyses indicated very small variability for the mean difference between the model predictions and the experimental measurements. The results of correlation analyses indicated similar trends for the three coordinates. Plotting the resultant and vertical ground reaction force for both right and left feet showed small discrepancies, but the overall shape was identical. The percentage differences between the model and the actual measurement for three coordinates of the center of mass, as well as resultant and vertical ground reaction force, were within 20%. This newly-developed stilt walking model may be used to assist in improving the design of stilts.



2014 ◽  
Vol 39 ◽  
pp. S11-S12 ◽  
Author(s):  
Philippe C. Dixon ◽  
Julie Stebbins ◽  
Tim Theologis ◽  
Amy B. Zavatsky


2014 ◽  
Vol 30 (1) ◽  
pp. 154-159 ◽  
Author(s):  
Hiroaki Hobara ◽  
Koh Inoue ◽  
Yoshiyuki Kobayashi ◽  
Toru Ogata

Despite the presence of several different calculations of leg stiffness during hopping, little is known about how the methodologies produce differences in the leg stiffness. The purpose of this study was to directly compareKlegduring hopping as calculated from three previously published computation methods. Ten male subjects hopped in place on two legs, at four frequencies (2.2, 2.6, 3.0, and 3.4 Hz). In this article, leg stiffness was calculated from the natural frequency of oscillation (method A), the ratio of maximal ground reaction force (GRF) to peak center of mass displacement at the middle of the stance phase (method B), and an approximation based on sine-wave GRF modeling (method C). We found that leg stiffness in all methods increased with an increase in hopping frequency, butKlegvalues using methods A and B were significantly higher than when using method C at all hopping frequencies. Therefore, care should be taken when comparing leg stiffness obtained by method C with those calculated by other methods.



Sign in / Sign up

Export Citation Format

Share Document