scholarly journals Isoform-specific reduction of the basic helix-loop-helix transcription factor TCF4 levels in Huntington's disease

eNeuro ◽  
2021 ◽  
pp. ENEURO.0197-21.2021
Author(s):  
Kaja Nurm ◽  
Mari Sepp ◽  
Carla Castany-Pladevall ◽  
Jordi Creus-Muncunill ◽  
Jürgen Tuvikene ◽  
...  
2001 ◽  
Vol 21 (19) ◽  
pp. 6418-6428 ◽  
Author(s):  
Shelley Lane ◽  
Song Zhou ◽  
Ting Pan ◽  
Qian Dai ◽  
Haoping Liu

ABSTRACT Candida albicans undergoes a morphogenetic switch from budding yeast to hyphal growth form in response to a variety of stimuli and growth conditions. Multiple signaling pathways, including a Cph1-mediated mitogen-activated protein kinase pathway and an Efg1-mediated cyclic AMP/protein kinase A pathway, regulate the transition. Here we report the identification of a basic helix-loop-helix transcription factor of the Myc subfamily (Cph2) by its ability to promote pseudohyphal growth inSaccharomyces cerevisiae. Like sterol response element binding protein 1, Cph2 has a Tyr instead of a conserved Arg in the basic DNA binding region. Cph2 regulates hyphal development in C. albicans, ascph2/cph2 mutant strains show medium-specific impairment in hyphal development and in the induction of hypha-specific genes. However, many hypha-specific genes do not have potential Cph2 binding sites in their upstream regions. Interestingly, upstream sequences of all known hypha-specific genes are found to contain potential binding sites for Tec1, a regulator of hyphal development. Northern analysis shows that TEC1 transcription is highest in the medium in which cph2/cph2 displays a defect in hyphal development, and Cph2 is necessary for this transcriptional induction of TEC1. In vitro gel mobility shift experiments show that Cph2 directly binds to the two sterol regulatory element 1-like elements upstream of TEC1. Furthermore, the ectopic expression of TEC1 suppresses the defect ofcph2/cph2 in hyphal development. Therefore, the function of Cph2 in hyphal transcription is mediated, in part, through Tec1. We further show that this function of Cph2 is independent of the Cph1- and Efg1-mediated pathways.


2007 ◽  
Vol 311 (2) ◽  
pp. 650-664 ◽  
Author(s):  
Judith K. Davie ◽  
Jang-Hyeon Cho ◽  
Eric Meadows ◽  
Jesse M. Flynn ◽  
Jennifer R. Knapp ◽  
...  

1994 ◽  
Vol 14 (12) ◽  
pp. 8343-8355
Author(s):  
M L Whitelaw ◽  
J A Gustafsson ◽  
L Poellinger

Gene regulation by dioxins is mediated via the dioxin receptor, a ligand-dependent basic helix-loop-helix (bHLH)/PAS transcription factor. The latent dioxin receptor responds to dioxin signalling by forming an activated heterodimeric complex with a specific bHLH partner, Arnt, an essential process for target DNA recognition. We have analyzed the transactivating potential within this heterodimeric complex by dissecting it into individual subunits, replacing the dimerization and DNA-binding bHLH motifs with heterologous zinc finger DNA-binding domains. The uncoupled Arnt chimera, maintaining 84% of Arnt residues, forms a potent and constitutive transcription factor. Chimeric proteins show that the dioxin receptor also harbors a strong transactivation domain in the C terminus, although this activity was silenced by inclusion of 82 amino acids from the central ligand-binding portion of the dioxin receptor. This central repression region conferred binding of the molecular chaperone hsp90 upon otherwise constitutive chimeras in vitro, indicating that hsp90 has the ability to mediate a cis-repressive function on distant transactivation domains. Importantly, when the ligand-binding domain of the dioxin receptor remained intact, the ability of this hsp90-binding activity to confer repression became conditional rather than irreversible. Our data are consistent with a model in which crucial activities of the dioxin receptor, such as dimerization with Arnt and transactivation, are conditionally repressed by the central ligand- and-hsp90-binding region of the receptor. In contrast, the Arnt protein appears to be free from any repressive activity. Moreover, within the context of the dioxin response element (xenobiotic response element), the C terminus of Arnt conferred a potent, dominating transactivation function onto the native bHLH heterodimeric complex. Finally, the relative transactivation potencies of the individual dioxin receptor and Arnt chimeras varied with cell type and promoter architecture, indicating that the mechanisms for transcriptional activation may differ between these two subunits and that in the native complex the transactivation pathway may be dependent upon cell-specific and promoter contexts.


Development ◽  
2000 ◽  
Vol 127 (2) ◽  
pp. 319-331 ◽  
Author(s):  
P. Daubas ◽  
S. Tajbakhsh ◽  
J. Hadchouel ◽  
M. Primig ◽  
M. Buckingham

Myf5 is a key basic Helix-Loop-Helix transcription factor capable of converting many non-muscle cells into muscle. Together with MyoD it is essential for initiating the skeletal muscle programme in the embryo. We previously identified unexpected restricted domains of Myf5 transcription in the embryonic mouse brain, first revealed by Myf5-nlacZ(+/)(−) embryos (Tajbakhsh, S. and Buckingham, M. (1995) Development 121, 4077–4083). We have now further characterized these Myf5 expressing neurons. Retrograde labeling with diI, and the use of a transgenic mouse line expressing lacZ under the control of Myf5 regulatory sequences, show that Myf5 transcription provides a novel axonal marker of the medial longitudinal fasciculus (mlf) and the mammillotegmental tract (mtt), the earliest longitudinal tracts to be established in the embryonic mouse brain. Tracts projecting caudally from the developing olfactory system are also labelled. nlacZ and lacZ expression persist in the adult brain, in a few ventral domains such as the mammillary bodies of the hypothalamus and the interpeduncular nucleus, potentially derived from the embryonic structures where the Myf5 gene is transcribed. To investigate the role of Myf5 in the brain, we monitored Myf5 protein accumulation by immunofluorescence and immunoblotting in neurons transcribing the gene. Although Myf5 was detected in muscle myotomal cells, it was absent in neurons. This would account for the lack of myogenic conversion in brain structures and the absence of a neural phenotype in homozygous null mutants. RT-PCR experiments show that the splicing of Myf5 primary transcripts occurs correctly in neurons, suggesting that the lack of Myf5 protein accumulation is due to regulation at the level of mRNA translation or protein stability. In the embryonic neuroepithelium, Myf5 is transcribed in differentiated neurons after the expression of neural basic Helix-Loop-Helix transcription factors. The signalling molecules Wnt1 and Sonic hedgehog, implicated in the activation of Myf5 in myogenic progenitor cells in the somite, are also produced in the viscinity of the Myf5 expression domain in the mesencephalon. We show that cells expressing Wnt1 can activate neuronal Myf5-nlacZ gene expression in dissected head explants isolated from E9.5 embryos. Furthermore, the gene encoding the basic Helix-Loop-Helix transcription factor mSim1 is expressed in adjacent cells in both the somite and the brain, suggesting that signalling molecules necessary for the activation of mSim1 as well as Myf5 are present at these different sites in the embryo. This phenomenon may be widespread and it remains to be seen how many other potentially potent regulatory genes, in addition to Myf5, when activated do not accumulate protein at inappropriate sites in the embryo.


2009 ◽  
Vol 47 (2) ◽  
pp. 188-195 ◽  
Author(s):  
Leon Espira ◽  
Lise Lamoureux ◽  
Stephen C. Jones ◽  
Robert D. Gerard ◽  
Ian M.C. Dixon ◽  
...  

2011 ◽  
pp. P2-303-P2-303
Author(s):  
Shwetha Ramachandrappa ◽  
Anne Raimondo ◽  
Julia Keogh ◽  
Elana Henning ◽  
Anna Cali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document