Category-biased neural representations form spontaneously during learning that emphasizes memory for specific instances

2021 ◽  
pp. JN-RM-1396-21
Author(s):  
Stefania R. Ashby ◽  
Dagmar Zeithamova
2020 ◽  
Author(s):  
Miriam E. Weaverdyck ◽  
Mark Allen Thornton ◽  
Diana Tamir

Each individual experiences mental states in their own idiosyncratic way, yet perceivers are able to accurately understand a huge variety of states across unique individuals. How do they accomplish this feat? Do people think about their own anger in the same ways as another person’s? Is reading about someone’s anxiety the same as seeing it? Here, we test the hypothesis that a common conceptual core unites mental state representations across contexts. Across three studies, participants judged the mental states of multiple targets, including a generic other, the self, a socially close other, and a socially distant other. Participants viewed mental state stimuli in multiple modalities, including written scenarios and images. Using representational similarity analysis, we found that brain regions associated with social cognition expressed stable neural representations of mental states across both targets and modalities. This suggests that people use stable models of mental states across different people and contexts.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Meir Meshulam ◽  
Liat Hasenfratz ◽  
Hanna Hillman ◽  
Yun-Fei Liu ◽  
Mai Nguyen ◽  
...  

AbstractDespite major advances in measuring human brain activity during and after educational experiences, it is unclear how learners internalize new content, especially in real-life and online settings. In this work, we introduce a neural approach to predicting and assessing learning outcomes in a real-life setting. Our approach hinges on the idea that successful learning involves forming the right set of neural representations, which are captured in canonical activity patterns shared across individuals. Specifically, we hypothesized that learning is mirrored in neural alignment: the degree to which an individual learner’s neural representations match those of experts, as well as those of other learners. We tested this hypothesis in a longitudinal functional MRI study that regularly scanned college students enrolled in an introduction to computer science course. We additionally scanned graduate student experts in computer science. We show that alignment among students successfully predicts overall performance in a final exam. Furthermore, within individual students, we find better learning outcomes for concepts that evoke better alignment with experts and with other students, revealing neural patterns associated with specific learned concepts in individuals.


Author(s):  
Suchitra Krishnamachari ◽  
Manoj Kumar ◽  
So Hyun Kim ◽  
Catherine Lord ◽  
Shrikanth Narayanan

NeuroImage ◽  
2021 ◽  
pp. 117724
Author(s):  
Lingxi Lu ◽  
Jingwei Sheng ◽  
Zhaowei Liu ◽  
Jia-Hong Gao

2016 ◽  
Vol 28 (11) ◽  
pp. 1749-1759 ◽  
Author(s):  
Benjamin D. Zinszer ◽  
Andrew J. Anderson ◽  
Olivia Kang ◽  
Thalia Wheatley ◽  
Rajeev D. S. Raizada

Two sets of items can share the same underlying conceptual structure, while appearing unrelated at a surface level. Humans excel at recognizing and using alignments between such underlying structures in many domains of cognition, most notably in analogical reasoning. Here we show that structural alignment reveals how different people's neural representations of word meaning are preserved across different languages, such that patterns of brain activation can be used to translate words from one language to another. Groups of Chinese and English speakers underwent fMRI scanning while reading words in their respective native languages. Simply by aligning structures representing the two groups' neural semantic spaces, we successfully infer all seven Chinese–English word translations. Beyond language translation, conceptual structural alignment underlies many aspects of high-level cognition, and this work opens the door to deriving many such alignments directly from neural representational content.


2009 ◽  
Vol 20 (9) ◽  
pp. 1084-1091 ◽  
Author(s):  
Sang Wook Hong ◽  
Steven K. Shevell

How does a physical stimulus determine a conscious percept? Binocular rivalry provides useful insights into this question because constant physical stimulation during rivalry causes different visual experiences. For example, presentation of vertical stripes to one eye and horizontal stripes to the other eye results in a percept that alternates between horizontal and vertical stripes. Presentation of a different color to each eye (color rivalry) produces alternating percepts of the two colors or, in some cases, a color mixture. The experiments reported here reveal a novel and instructive resolution of rivalry for stimuli that differ in both form and color: perceptual alternation between the rivalrous forms (e.g., horizontal or vertical stripes), with both eyes' colors seen simultaneously in separate parts of the currently perceived form. Thus, the colors presented to the two eyes (a) maintain their distinct neural representations despite resolution of form rivalry and (b) can bind separately to distinct parts of the perceived form.


Sign in / Sign up

Export Citation Format

Share Document