scholarly journals Responses of Soil Properties and Bacterial Community to the Application of Sulfur Fertilizers in Black and Sandy Soils

Author(s):  
Siqi Dong ◽  
Shuoran Liu ◽  
Shuai Cui ◽  
Xue Zhou ◽  
Qiang Gao
Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 612
Author(s):  
Aneta Lisowska ◽  
Barbara Filipek-Mazur ◽  
Józef Sołtys ◽  
Marcin Niemiec ◽  
Olga Gorczyca ◽  
...  

There is a potential for using sulfur waste in agriculture. The main objective of this study was to design a granular fertilizer based on waste elemental sulfur. Humic acids and halloysite were used to improve the properties and their influence on soil properties. This is the first report on the use of proposed materials for fertilizer production. The following granular fertilizers were prepared (the percentage share of component weight is given in brackets): fertilizer A (waste sulfur (95%) + halloysite (5%)), fertilizer B (waste sulfur (81%) + halloysite (5%) + humic acids (14%)), fertilizer C (waste sulfur (50%) + halloysite (50%)) and fertilizer D (waste sulfur (46%) + halloysite (46%) + humic acids (8%)). Basic properties of the obtained granulates were determined. Furthermore, the effect of the addition of the prepared fertilizers on soil pH, electrolytic conductivity, and sulfate content was examined in a 90-day incubation experiment. Enrichment with humic acids and the higher amount of halloysite increased the fertilizer properties (especially the share of larger granules and bulk density). In addition, it stabilized soil pH and increased the sulfur content (extracted with 0.01 mol·L−1 CaCl2 and Mehlich 3) in the soil.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingjing Wang ◽  
Song Xu ◽  
Rong Yang ◽  
Wei Zhao ◽  
Dan Zhu ◽  
...  

AbstractPlant growth-promoting bacteria (PGPB) inoculants have been applied worldwide. However, the ecological roles of PGPB under different soil conditions are still not well understood. The present study aimed to explore the ecological roles of Bacillus amyloliquefaciens FH-1 (FH) on cucumber seedlings, rhizosphere soil properties, and the bacterial community in pot experiments. The results showed that FH had significant effects on cucumber seedlings and the rhizosphere bacterial community but not on soil properties. The FH promoted cucumber seedlings growth, reduced the rhizosphere bacterial diversity, increased Proteobacteria, and decreased Acidobacteria. Linear discriminant analysis (LDA) effect size (LEfSe) revealed that FH enriched two taxa (GKS2_174 and Nannocystaceae) and inhibited 18 taxa (mainly Acidobacteria, Actinobacteria, BRC1, Chloroflexi, Plantctomycetes, and Verrucomicrobia). Co-occurrence network analysis demonstrated that FH increased bacteria-bacteria interactions and that Bacillus (genus of FH) had few interactions with the enriched and inhibited taxa. This might indicate that FH does not directly affect the enriched and inhibited taxa. Correlation analysis results displayed that cucumber seedlings’ weight and height/length (except root length) were significantly correlated with the 18 inhibited taxa and the enriched taxa Nannocystaceae. It was speculated that FH might promote cucumber seedling growth by indirectly enriching Nannocystaceae and inhibiting some taxa from Acidobacteria, Actinobacteria, BRC1, Chloroflexi, Plantctomycetes, and Verrucomicrobia.


2019 ◽  
Vol 11 (21) ◽  
pp. 6020 ◽  
Author(s):  
Karolina Furtak ◽  
Jarosław Grządziel ◽  
Anna Gałązka ◽  
Jacek Niedźwiecki

The authors would like to make the following correction about the published paper [...]


Geoderma ◽  
2007 ◽  
Vol 142 (3-4) ◽  
pp. 342-348 ◽  
Author(s):  
Ha-Lin Zhao ◽  
Rui-Lian Zhou ◽  
Sam Drake

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiayu Zheng ◽  
Jixu Zhang ◽  
Lin Gao ◽  
Rui Wang ◽  
Jiaming Gao ◽  
...  

AbstractBiochar is an effective soil conditioner. However, we have limited understanding of biochar effects on the tobacco growth and bacterial communities in rhizosphere. The aim of this study was to investigate the effects of different straw biochar amendment (0, 2, 10, and 50 g/kg dry soil) on tobacco growth, soil properties, and bacterial communities in rhizosphere by pot trials. Most of tobacco agronomic traits increased when the application rate varied from 0 to 10 g/kg, but were inhibited by 50 g/kg of biochar application. Soil pH, SOC, available nutrients and soil urease, invertase, and acid phosphatase activities were all increased with the biochar application, whereas catalase activity decreased or remained unchanged. The OTUs and bacterial community diversity indices differed with the biochar application doses in rhizosphere and non-rhizosphere soils. And significant differences in bacterial communities were found between the rhizosphere and non-rhizosphere soils despite the biochar addition. Firmicutes, Proteobacteria, Acidobacteria, Bacteroidetes, and Actinobacteria were the dominant phyla in all soil samples, but they had different abundances in different treatment influenced by the rhizosphere and biochar effect. The high dose of biochar (50 g/kg) decreased the similarity of soil bacterial community structure in rhizosphere compared with those in non-rhizosphere soil. These results provide a better understanding of the microecological benefits of straw biochar in tobacco ecosystem.


2021 ◽  
Vol 13 (17) ◽  
pp. 9748
Author(s):  
Yi-Long Hao ◽  
Gang Li ◽  
Zu-Fei Xiao ◽  
Ning Liu ◽  
Muhammad Azeem ◽  
...  

Antibiotic resistance genes (ARGs) are ubiquitous in the environment, with previous studies mainly focusing on the terrestrial ecosystem, which is prone to higher antibiotic application. However, the characteristics, distribution pattern, and driving factors of soil ARGs at the macro scale are still unclear. In this study, the soil ARGs, antibiotics, mobile genetic elements (MGEs), soil properties, toxic metals, polycyclic aromatic hydrocarbons (PAHs), and bacterial community in the Taipu River Basin were analyzed to investigate the distribution and dissemination of ARGs at a watershed scale. The results revealed that ARGs were widespread in the soils along the Taipu River, and that ARG profiles varied greatly with different types of land use, but showed regional similarities. The characteristics were mainly determined by antibiotic input and the ARG transmission mediated by MGEs. The order of the contribution of environmental factors to ARG distribution was toxic metals > PAHs > soil properties. Toxic metal pollution was coupled with ARGs through MGE mediation, while PAHs and soil properties were most likely to affect the ARG distribution by shifting the bacterial community. The microbial–ecological relationship changed significantly with the enrichment of ARGs, and its impact may extend to the watershed scale. Transposon IS1247 can be used as an indicator of the ARGs impact on the microbial ecological relationship in the soils of the Taipu River Basin.


2019 ◽  
Author(s):  
Yan Bai ◽  
Xiying Huang ◽  
Xiangrui Zhou ◽  
Quanju Xiang ◽  
Ke Zhao ◽  
...  

Background: The Hailuogou Glacier in the Gongga Mountain region (SW China), on the southeastern edge of the Tibetan Plateau, is well known for its low-elevation modern glaciers. Since the end of the Little Ice Age (LIA), the Hailuogou Glacier has retreated continuously due to global warming, primary vegetation succession and soil chronosequence have developed in this retreat area. The retreated area of Hailuogou Glacier has not been strongly disturbed by human activities, thus it is an ideal models for exploring the biological colonization of nitrogen in the primary successional stages of ecosystem. The nosZ gene encodes the catalytic center of nitrous oxide reductase and is an ideal molecular marker in studying the variation in the denitrifying bacterial community. Methods: Soil properties as well as abundance and composition of the denitrifying bacterial community were determined via chemical analysis, quantitative polymerase chain reaction (qPCR), and terminal restriction fragment length polymorphism (T-RFLP), respectively. The relationships between the nosZ denitrifying bacterial community and soil properties were determined using redundancy analysis (RDA). Soil properties, potential denitrify activity (PDA), and the nitrous oxide reductase gene (nosZ)-denitrifying bacterial communities significantly differed among successional stages. Results: Soil properties, potential denitrify activity (PDA), and the nitrous oxide reductase gene (nosZ)-denitrifying bacterial communities significantly differed among successional stages. Soil pH in the topsoil decreased from 8.42 to 7.19 in the course of primary succession, while soil organic carbon (SOC) and total nitrogen (TN) gradually increased with primary succession. Available phosphorus (AP) and available potassium (AK), as well as potential denitrify activity (PDA), increased gradually and peaked at the 40-year-old site. The abundance of the nosZ denitrifying bacterial community followed a similar trend. The variation in the denitrifying community composition was complex; Mesorhizobium dominated the soil in the early successional stages (0-20 years) and in the mature phase (60 years), with a relative abundance greater than 55%. Brachybacterium was increased in the 40-year-old site, with a relative abundance of 62.74%, while Azospirillum dominated the early successional stages (0-20 years). Redundancy analysis (RDA) showed that the nosZ denitrifying bacterial community correlated with soil available phosphorus and available potassium levels (P < 0.01).


Sign in / Sign up

Export Citation Format

Share Document