scholarly journals 40 YEARS OF IGF1: PAPP-A and cancer

2018 ◽  
Vol 61 (1) ◽  
pp. T1-T10 ◽  
Author(s):  
Cheryl A Conover ◽  
Claus Oxvig

The zinc metalloproteinase, PAPP-A, enhances local insulin-like growth factor (IGF) action through cleavage of inhibitory IGF-binding proteins, thereby increasing IGF available for IGF receptor-mediated cell proliferation, migration and survival. In many tumors, enhanced IGF receptor signaling is associated with tumor growth, invasion and metastasis. We will first discuss PAPP-A structure and function, and post-translational inhibitors of PAPP-A expression or proteolytic activity. We will then review the evidence supporting an important role for PAPP-A in many cancers, including breast, ovarian and lung cancer, and Ewing sarcoma.

2001 ◽  
Vol 92 (6) ◽  
pp. 888-892 ◽  
Author(s):  
Annekatrin Lukanova ◽  
Paolo Toniolo ◽  
Arslan Akhmedkhanov ◽  
Carine Biessy ◽  
Nancy J. Haley ◽  
...  

2021 ◽  
Vol 30 ◽  
pp. 096368972098607
Author(s):  
Shi-Yuan Liu ◽  
Zhi-Yu Zhao ◽  
Zhe Qiao ◽  
Shao-Min Li ◽  
Wei-Ning Zhang

Long noncoding RNAs (lncRNAs) are increasingly recognized as indispensable components of the regulatory network in the progression of various cancers, including nonsmall cell lung cancer (NSCLC). The lncRNA prostate cancer associated transcript 1 (PCAT1) has been involved in tumorigenesis of multiple malignant solid tumors, but it is largely unknown that what is the role of lncRNA-PCAT1 and how it functions in the progression of lung cancer. Herein, we observed that lncRNA PCAT1 expression was upregulated in both human NSCLC tissues and cell lines, which was determined by qualitative polymerase chain reaction analysis. Then, gain-and loss-of-function manipulations were performed in A549 cells by transfection with a specific short interfering RNA against PCAT1 or a pcDNA-PCAT1 expression vector. The results showed that PCAT1 not only promoted NSCLC cell proliferation and invasion but also inhibited cell apoptosis. Bioinformatics and expression correlation analyses revealed that there was a potential interaction between PCAT1 and the dyskerin pseudouridine synthase 1 (DKC1) protein, an RNA-binding protein. Then, RNA pull-down assays with biotinylated probes and transcripts both confirmed that PCAT1 directly bounds with DKC1 that could also promote NSCLC cell proliferation and invasion and inhibit cell apoptosis. Moreover, the effects of PCAT1 and DKC1 on NSCLC functions are synergistic. Furthermore, PCAT1 and DKC1 activated the vascular endothelial growth factor (VEGF)/protein kinase B (AKT)/Bcl-2/caspase9 pathway in NSCLC cells, and inhibition of epidermal growth factor receptor, AKT, or Bcl-2 could eliminate the effect of PCAT1/DKC1 co-overexpression on NSCLC cell behaviors. In conclusion, lncRNA PCAT1 interacts with DKC1 to regulate proliferation, invasion, and apoptosis in NSCLC cells via the VEGF/AKT/Bcl-2/caspase9 pathway.


Sign in / Sign up

Export Citation Format

Share Document