scholarly journals Size Stabilizers in Two-electrode Synthesis of ZnO Nanorods

2021 ◽  
Vol 22 (2) ◽  
pp. 380-387
Author(s):  
R.V. Korol ◽  
O.M. Yanchuk ◽  
O.V. Marchuk ◽  
V.F. Orlov ◽  
I.A. Moroz ◽  
...  

We modify and optimize a cheap, simple and effective synthesis of zinc oxide nanosized particles by electrodeposition. The core method encompasses the synthesis of ZnO product on the soluble zinc anode of the two-zinc-electrode cell emerged in aqueous NaCl. Resulting particles have the shape of cocoa fruit, thick in the middle and sharp at the edges. They have uniform shape, but broad size distributions with most of the ZnO product 1-2 µm long and 0,5-0,7 µm thick. Thus, auxiliary stabilizers are added to aqueous phase to reduce the size and narrow its distribution in the target product. Here we present the size stabilizing action of four successful stabilizers: urea, polyvinyl alcohol, Triton x-100 and Atlas G3300. All of them reduce particle size and polydispersity. An anionactive surfactant atlas is the most effective, giving an order of magnitude nanorod size reduction.

Solar Physics ◽  
2019 ◽  
Vol 294 (10) ◽  
Author(s):  
James Pickering ◽  
Huw Morgan

Abstract The increasing size of solar datasets demands highly efficient and robust analysis methods. This paper presents an approach that can increase the computational efficiency of differential emission measure (DEM) inversions by an order of magnitude or higher, with the efficiency factor increasing with the size of the input dataset. The method, named the Gridded Solar Iterative Temperature Emission Solver (Grid-SITES) is based on grouping pixels according to the similarity of their intensities in multiple channels, and solving for one DEM per group. This is shown to be a valid approach, given a sufficiently high number of grid bins for each channel. The increase in uncertainty arising from the quantisation of the input data is small compared to the general measurement and calibration uncertainties. In this paper, we use the Solar Iterative Temperature Emission Solver (SITES) as the core method for the DEM inversion, although Grid-SITES provides a general framework which may be used with any DEM inversion method, or indeed any large multi-dimensional data inversion problem. The method is particularly efficient for processing larger images, offering a factor of 30 increase in speed for a 10 megapixel image. For a time series of observations, the gridded results can be passed sequentially to each new image, with new populated bins added as required. This process leads to increasing efficiency with each new image, with potential for a ${\approx\,}100$≈100 increase in efficiency dependent on the size of the images.


2021 ◽  
Author(s):  
◽  
Anna Borisovna Albot

<p>Grain size analysis of the terrigenous fraction of a laminated diatom ooze dating back to 11.4 kyr recovered offshore Adélie Land, East Antarctic margin was used to examine variations in sediment transport, depositional environments and Holocene climate variability at the location. Interpretations were assisted by additional proxies of primary productivity (δ¹³CFA, BSi%), glacial meltwater input (δDFA) and subsurface temperature (TEXL₈₆). Three lithologic intervals with distinct grain size distributions were identified. At ~11.4 ka the diatom ooze has a clear glacimarine influence which gradually decreases until ~8.2 ka. During this time interval, coincident with the early Holocene warm period, sediment is inferred to have been delivered by glacial meltwater plumes and ice-bergs in a calving bay environment. It is suggested that the glaciers in Adélie Land had retreated to their present day grounding lines by 8.2 ka, and from then on sediment was delivered to the site primarily via the Antarctic Coastal and Slope Front Currents, largely through a suspended sediment load and erosion of the surrounding banks. Enhanced biogenic mass accumulation rates and primary production at 8.2 ka suggest onset of warmer climatic conditions, coincident with the mid-Holocene Climatic Optimum.  At ~4.5 ka, grain size distributions show a rapid increase in mud content coincident with a transient pulse of glacial meltwater and a sudden decrease in biogenic and terrigenous mass accumulation rates. The increased mud content is inferred to have been deposited under a reduced flow regime of the Antarctic Coastal and Slope Front Currents during the Neoglacial period that followed the final stages of deglaciation in the Ross Sea. It is hypothesised here that cessation of glacial retreat in the Ross Sea and the development of the modern day Ross Sea polynya resulted in enhanced Antarctic Surface Water production which led to increased sea ice growth in the Adélie Land region. The presence of sea ice led to reduced primary production and a decrease in the maximum current strength acting to advect coarser-sized terrigenous sediment to the core site during this time.  Sedimentation rates appear to have a strong correlation with the El Niño Southern Oscillation (ENSO) over the last 8.2 kyr, and are inferred to be related to changing sea ice extent and zonal wind strength. Light laminae counts (biogenic bloom events) appear to decrease in frequency during time intervals dominated by El Niño events. Spectral analysis of the greyscale values of core photographs reveals peaks in the 2-7 year band, known ENSO periods, which increase in frequency in the mid-and-late Holocene. Spectral analyses of the sand percent and natural gamma ray (NGR, a measure of clay mineral input) content of the core reveal peaks in the ~40-60, 200-300, 600, 1200-1600 and 2200-2400 year bands. The most significant of these cycles in the NGR data is in 40-60 year band may be related to internal mass balance dynamics of the Mertz Glacier or to the expansion and contraction of the Antarctic circumpolar vortex. Cycles in the 200-300 and 2200-2400 year bands are related to known periods of solar variability, which have previously been found to regulate primary productivity in Antarctic coastal waters. Cycles in the 590-625 and 1200-1600 year bands have a strong signal through the entire record and are common features of Holocene climatic records, however the origin of these cycles is still under debate between solar forcing and an independent mode of internal ocean oscillation.</p>


Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 266 ◽  
Author(s):  
Ehsan Moradi ◽  
Jesús Rodrigo-Comino ◽  
Enric Terol ◽  
Gaspar Mora-Navarro ◽  
Alexandre Marco da Silva ◽  
...  

Agricultural activities induce micro-topographical changes, soil compaction and structural changes due to soil cultivation, which directly affect ecosystem services. However, little is known about how these soil structural changes occur during and after the planting of orchards, and which key factors and processes play a major role in soil compaction due to cultivation works. This study evaluates the improved stock unearthing method (ISUM) as a low-cost and precise alternative to the tedious and costly traditional core sampling method, to characterize the changes in soil compaction in a representative persimmon orchard in Eastern Spain. To achieve this goal, firstly, in the field, undisturbed soil samples using metallic core rings (in January 2016 and 2019) were collected at different soil depths between 45 paired-trees, and topographic variations were determined following the protocol established by ISUM (January 2019). Our results show that soil bulk density (Bd) increases with depth and in the inter-row area, due to the effect of tractor passes and human trampling. The bulk density values of the top surface layers (0–12 cm) showed the lowest soil accumulation, but the highest temporal and spatial variability. Soil consolidation within three years after planting as calculated using the core samples was 12 mm, whereas when calculated with ISUM, it was 14 mm. The quality of the results with ISUM was better than with the traditional core method, due to the higher amount of sampling points. The ISUM is a promising method to measure soil compaction, but it is restricted to the land where soil erosion does not take place, or where soil erosion is measured to establish a balance of soil redistribution. Another positive contribution of ISUM is that it requires 24 h of technician work to acquire the data, whereas the core method requires 272 h. Our research is the first approach to use ISUM to quantify soil compaction and will contribute to applying innovative and low-cost monitoring methods to agricultural land and conserving ecosystem services.


2019 ◽  
Vol 233 (7) ◽  
pp. 995-1017 ◽  
Author(s):  
Sadia Ata ◽  
Anila Tabassum ◽  
Ismat Bibi ◽  
Samina Ghafoor ◽  
Abdul Ahad ◽  
...  

Abstract Zinc oxide (ZnO) nanorods were fabricated through hydrothermal route and employed for the adsorption of Cr(VI) ions from aqueous medium. Zinc nitrate hexahydrate (Zn(NO3)2.6H2O) was used as a zinc precursor and Triton-x 100 was used as a capping agent. As synthesized ZnO nanorods were characterized by UV-visible spectroscopy (UV), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-Ray spectroscopy (EDX) techniques. The adsorption affecting parameters were investigated for maximum adsorption of Cr(VI) onto ZnO nanorods. The adsorption kinetics, isotherms, and thermodynamics were applied for adsorption mechanism evaluation. Maximum adsorption of Cr(VI) ions (250 mg/g) was achieved using 0.055 g/L ZnO dose at pH 2.0 for the contact time of 30 min. Pseudo-second-order kinetic model and Langmuir isotherm explained well the Cr(VI) adsorption onto ZnO nanorods. The Cr(VI) adsorption onto ZnO was spontaneous and endothermic in nature. In view of promising adsorption efficiency, ZnO nanorods could possibly be used for Cr(VI) ions removal from wastewater and also extendable for the adsorption of other heavy metals ions.


IEEE Software ◽  
1992 ◽  
Vol 9 (5) ◽  
pp. 22-33 ◽  
Author(s):  
S. Faulk ◽  
J. Brackett ◽  
P. Ward ◽  
J. Kirby

2020 ◽  
Vol 495 (3) ◽  
pp. 3124-3159 ◽  
Author(s):  
Ryley Hill ◽  
Scott Chapman ◽  
Douglas Scott ◽  
Yordanka Apostolovski ◽  
Manuel Aravena ◽  
...  

ABSTRACT We present an extensive ALMA spectroscopic follow-up programme of the $z\, {=}\, 4.3$ structure SPT2349–56, one of the most actively star-forming protocluster cores known, to identify additional members using their [C ii] 158 μm and CO(4–3) lines. In addition to robustly detecting the 14 previously published galaxies in this structure, we identify a further 15 associated galaxies at $z\, {=}\, 4.3$, resolving 55$\, {\pm }\,$5 per cent of the 870 μm flux density at 0.5 arcsec resolution compared to 21 arcsec single-dish data. These galaxies are distributed into a central core containing 23 galaxies extending out to 300 kpc in diameter, and a northern extension, offset from the core by 400 kpc, containing three galaxies. We discovered three additional galaxies in a red Herschel-SPIRE source 1.5 Mpc from the main structure, suggesting the existence of many other sources at the same redshift as SPT2349–56 that are not yet detected in the limited coverage of our data. An analysis of the velocity distribution of the central galaxies indicates that this region may be virialized with a mass of (9$\pm 5)\, {\times }\, 10^{12}$  M⊙, while the two offset galaxy groups are about 30 and 60 per cent less massive and show significant velocity offsets from the central group. We calculate the [C ii] and far-infrared number counts, and find evidence for a break in the [C ii] luminosity function. We estimate the average SFR density within the region of SPT2349–56 containing single-dish emission (a proper diameter of 720 kpc), assuming spherical symmetry, to be roughly 4$\, {\times }\, 10^4$ M⊙ yr−1 Mpc−3; this may be an order of magnitude greater than the most extreme examples seen in simulations.


2020 ◽  
Vol 27 (08) ◽  
pp. 1950198
Author(s):  
ABDULQADER D. FAISAL ◽  
MOHAMMAD O. DAWOOD ◽  
HASSAN H. HUSSEIN ◽  
KHALEEL I. HASSOON

In this work, ZnO nanorods (ZnO NRs) were successfully synthesized on FTO-glass via hydrothermal technique. Two steps were followed to grow ZnO NRs. In the first step, the seed layer of ZnO nanocrystals was deposited by using a drop cast method. The second step was represented by the hydrothermal growth of ZnO NRs on a pre-coated FTO- glass with the seed layer. The hydrothermal growth was conducted at 90∘C for 2[Formula: see text]h. The resulted structure, morphology and optical properties of the produced layers were analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray (EDX) and UV-visible spectrophotometer, respectively. The analysis confirmed that the ZnO NRs grown by the hydrothermal method have a hexagonal crystal structure which was grown randomly on the FTO surface. The crystallite size was recorded 50[Formula: see text]nm and a slight microstrain (0.142%) was calculated. The bandgap was found to be in the range of 3.14–3.17[Formula: see text]eV. The ZnO NRs have a high density and large aspect ratio. A pH sensor with high sensitivity was fabricated using a two-electrode cell configuration. The ZnO NRs sensor showed the sensitivity of [Formula: see text]59.03[Formula: see text]mV/pH, which is quite promising and close to the theoretical value ([Formula: see text]59.12[Formula: see text]mV/pH).


Sign in / Sign up

Export Citation Format

Share Document