Thermal, structural, and mechanical effects of nanofibrillated cellulose in polylactic acid filaments for additive manufacturing

BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 7954-7964
Author(s):  
Diego Gomez-Maldonado ◽  
Maria Soledad Peresin ◽  
Christina Verdi ◽  
Guillermo Velarde ◽  
Daniel Saloni

As the additive manufacturing process gains worldwide importance, the need for bio-based materials, especially for in-home polymeric use, also increases. This work aims to develop a composite of polylactic acid (PLA) and nanofibrillated cellulose (NFC) as a sustainable approach to reinforce the currently commercially available PLA. The studied materials were composites with 5 and 10% NFC that were blended and extruded. Mechanical, structural, and thermal characterization was made before its use for 3D printing. It was found that the inclusion of 10% NFC increased the modulus of elasticity in the filaments from 2.92 to 3.36 GPa. However, a small decrease in tensile strength was observed from 55.7 to 50.8 MPa, which was possibly due to the formation of NFC aggregates in the matrix. This work shows the potential of using PLA mixed with NFC for additive manufacturing.

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Liang Wu ◽  
Stephen Beirne ◽  
Joan-Marc Cabot Canyelles ◽  
Brett Paull ◽  
Gordon G. Wallace ◽  
...  

Additive manufacturing (3D printing) offers a flexible approach for the production of bespoke microfluidic structures such as the electroosmotic pump. Here a readily accessible fused filament fabrication (FFF) 3D printing...


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2960
Author(s):  
Zoltan Ujfalusi ◽  
Attila Pentek ◽  
Roland Told ◽  
Adam Schiffer ◽  
Miklos Nyitrai ◽  
...  

Currently, 3D printing is an affordable technology for industry, healthcare, and individuals. Understanding the mechanical properties and thermoplastic behaviour of the composites is critical for the users. Our results give guidance for certain target groups including professionals in the field of additive manufacturing for biomedical components with in-depth characterisation of the examined commercially available ABS and PLA carbon-based composites. The study aimed to characterize these materials in terms of thermal behaviour and structure. The result of the heating-cooling loops is the thermal hysteresis effect of Ohmic resistance with its accommodation property in the temperature range of 20–84 °C for ESD-ABS and 20–72 °C for ESD-PLA. DSC-TGA measurements showed that the carbon content of the examined ESD samples is ~10–20% (m/m) and there is no significant difference in the thermodynamic behaviour of the basic ABS/PLA samples and their ESD compounds within the temperature range typically used for 3D printing. The results support the detailed design process of 3D-printed electrical components and prove that ABS and PLA carbon composites are suitable for prototyping and the production of biomedical sensors.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 334 ◽  
Author(s):  
Cristina Pavon ◽  
Miguel Aldas ◽  
Juan López-Martínez ◽  
Santiago Ferrándiz

In this work, different materials for three-dimensional (3D)-printing were studied, which based on polycaprolactone with two natural additives, gum rosin, and beeswax. During the 3D-printing process, the bed and extrusion temperatures of each formulation were established. After, the obtained materials were characterized by mechanical, thermal, and structural properties. The results showed that the formulation with containing polycaprolactone with a mixture of gum rosin and beeswax as additive behaved better during the 3D-printing process. Moreover, the miscibility and compatibility between the additives and the matrix were concluded through the thermal assessment. The mechanical characterization established that the addition of the mixture of gum rosin and beeswax provides greater tensile strength than those additives separately, facilitating 3D-printing. In contrast, the addition of beeswax increased the ductility of the material, which makes the 3D-printing processing difficult. Despite the fact that both natural additives had a plasticizing effect, the formulations containing gum rosin showed greater elongation at break. Finally, Fourier-Transform Infrared Spectroscopy assessment deduced that polycaprolactone interacts with the functional groups of the additives.


2019 ◽  
Vol 952 ◽  
pp. 153-162 ◽  
Author(s):  
Šimon Lecký ◽  
Stefan Václav ◽  
Dávid Michal ◽  
Róbert Hrušecký ◽  
Peter Košťál ◽  
...  

Paper focuses on additive manufacturing of assembly tool for hole selection. One of the most important part in design and optimization process in additive manufacturing for assembly tool is material selection and technology. In this case was chosen plastic material know as poly-lactic-acid. Polylactic acid has low shrinkage and huge potential in assembly tooling and assembly fixture manufacturing. Main benefits are in use of additive manufacturing for this purpose because of huge manufacturing variability and time savings in case of frequent design changes. From filament fused fabrication technology stand point is important to determine right manufacturing orientation of part. Main material benefit is bio-degradability and recyclability. Current trend in manufacturing is bio materials, clean manufacturing and ecofriendly products. Correct orientation of assembly tool will optimize manufacturing process in one way. Article is aimed on manufacturing precision in each orientation of part on build late. With right orientation of part in additive manufacturing process is determined exact precision of assembly tool manufacturing. For measurement was used coordinate-measuring machine. In this case measurements and precision checking are made only in exact spots where is needed the most precise distance


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1487 ◽  
Author(s):  
Yuhan Liao ◽  
Chang Liu ◽  
Bartolomeo Coppola ◽  
Giuseppina Barra ◽  
Luciano Di Maio ◽  
...  

Additive manufacturing (AM) is a promising technology for the rapid tooling and fabrication of complex geometry components. Among all AM techniques, fused filament fabrication (FFF) is the most widely used technique for polymers. However, the consistency and properties control of the FFF product remains a challenging issue. This study aims to investigate physical changes during the 3D printing of polylactic acid (PLA). The correlations between the porosity, crystallinity and mechanical properties of the printed parts were studied. Moreover, the effects of the build-platform temperature were investigated. The experimental results confirmed the anisotropy of printed objects due to the occurrence of orientation phenomena during the filament deposition and the formation both of ordered and disordered crystalline forms (α and δ, respectively). A heat treatment post-3D printing was proposed as an effective method to improve mechanical properties by optimizing the crystallinity (transforming the δ form into the α one) and overcoming the anisotropy of the 3D printed object.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2444 ◽  
Author(s):  
Paweł Turek ◽  
Grzegorz Budzik ◽  
Łukasz Przeszłowski

Nowadays, 3D printing technologies are among the rapidly developing technologies applied to manufacture even the most geometrically complex models, however no techniques dominate in the area of craniofacial applications. This study included 12 different anatomical structures of the mandible, which were obtained during the process of reconstructing data from the Siemens Somatom Sensation Open 40 system. The manufacturing process used for the 12 structures involved the use of 8 3D printers and 12 different polymer materials. Verification of the accuracy and radiological density was performed with the CT160Xi Benchtop tomography system. The most accurate results were obtained in the case of models manufactured using the following materials: E-Model (Standard Deviation (SD) = 0.145 mm), FullCure 830 (SD = 0.188 mm), VeroClear (SD = 0.128 mm), Digital ABS-Ivory (SD = 0.117 mm), and E-Partial (SD = 0.129 mm). In the case of radiological density, ABS-M30 was similar to spongious bone, PC-10 was similar to the liver, and Polylactic acid (PLA) and Polyethylene terephthalate (PET) were similar to the spleen. Acrylic resin materials were able to imitate the pancreas, kidney, brain, and heart. The presented results constitute valuable guidelines that may improve currently used radiological phantoms and may provide support to surgeons in the process of performing more precise treatments within the mandible area.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 719 ◽  
Author(s):  
Iulian Antoniac ◽  
Diana Popescu ◽  
Aurelian Zapciu ◽  
Aurora Antoniac ◽  
Florin Miculescu ◽  
...  

The main objective of this research is to prove the viability of obtaining magnesium (Mg) filled polylactic acid (PLA) biocomposites as filament feedstock for material extrusion-based additive manufacturing (AM). These materials can be used for medical applications, thus benefiting of all the advantages offered by AM technology in terms of design freedom and product customization. Filaments were produced from two PLA + magnesium + vitamin E (α-tocopherol) compositions and then used for manufacturing test samples and ACL (anterior cruciate ligament) screws on a low-cost 3D printer. Filaments and implant screws were characterized using SEM (scanning electron microscopy), FTIR (fourier transform infrared spectrometry), and DSC (differential scanning calorimetry) analysis. Although the filament manufacturing process could not ensure a uniform distribution of Mg particles within the PLA matrix, a good integration was noticed, probably due to the use of vitamin E as a precursor. The results also show that the composite biomaterials can ensure and maintain implant screws structural integrity during the additive manufacturing process.


2020 ◽  
Vol 110 (07-08) ◽  
pp. 521-525
Author(s):  
Michael Baranowski ◽  
Markus Netzer ◽  
Sven Coutandin ◽  
Jürgen Fleischer

Die additive Fertigung erlaubt eine standortunabhängige sowie de facto individualisierte Produktion von Bauteilen mit nahezu beliebiger Komplexität. Für die flexible Herstellung von hochfunktionalen Hybridbauteilen fehlt es allerdings an entsprechenden Maschinenkonzepten sowie Automatisierungslösungen. Durch ein hier vorgestelltes Anlagenkonzept sollen Funktionskomponenten in den additiven Herstellungsprozess integriert und neue Möglichkeiten der Bauteilhybridisierung erforscht werden.   Additive manufacturing allows a location-independent and de facto individualized production of components of almost any complexity. However, there is a need for appropriate machine concepts and automation solutions for the flexible production of highly functional hybrid components. A plant concept presented here is intended to integrate functional components into the additive manufacturing process and to explore new possibilities for component hybridization.


2013 ◽  
Vol 594-595 ◽  
pp. 770-774 ◽  
Author(s):  
Husseinsyah Salmah ◽  
A. Siti Rohana ◽  
Hussin Kamarudin

Inorganic filler, calcium carbonate (CaCO3) was used as filler in the polypropylene (PP)/ ethylene propylene diene terpolymer (EPDM) composites. The composites were compatibilized with Maleic anhydride grafted polypropylene (MAPP) in order to improve the properties. The addition of CaCO3 at has increased the modulus of elasticity of composites but tensile strength and elongation at break of uncompatibilized composites decreased with increasing CaCO3. The result shows that the compatibilized composites higher tensile strength and Modulus of elasticity but lower elongation at break compared to uncompatibilized composites. At 10 wt% CaCO3 showed higher tensile strength of uncompatibiled and compatibilized composites. The morphology study from SEM analysis reveals that compatibilized composites show better interfacial adhesion between the filler and the matrix. The addition of MAPP has improved crystallinity of compatibilized composites.


2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Ikhwan Taufik ◽  
Herru Santosa Budiono ◽  
Herianto Herianto ◽  
Deni Andriyansyah

Tingkat kekasaran permukaan (Surface Roughness) merupakan salah satu hal penting dalam menentukan kualitas sebuah objek dalam dunia manufaktur tidak terkecuali teknologi Additive Manufacturing. Teknologi yang sering juga disebut 3D Printing ini juga merupakan salah satu teknologi kunci di Era Revolusi Industri 4.0 yang sedang berlangsung saat ini. Penelitian ini bertujuan untuk mengetahui pengaruh Printing Speed terhadap Surface Roughness produk yang dibuat menggunakan teknologi 3D Printing. Printing Speed merupakan salah satu parameter yang dapat diatur dan ditetapkan sebelum proses slicing dilakukan. Dalam penelitian ini, Printing Speed ditentukan 60 mm/s saat proses slicing menggunakan aplikasi CURA. Namun, variasi Printing Speed ini diatur di mesin 3D Printing yaitu 50% (spesimen ke-1), 100% (spesimen ke-2), dan 150% (spesimen ke-3). Pengukuran Surface Roughness dilakukan menggunakan Profilometer produk dari Mitutoyo seri Surftest SJ-210. Dengan batasan-batasan parameter yang ada di dalam penelitian ini, bisa disimpulkan bahwa nilai rata-rata hasil pengukuran tingkat kekasaran permukaan atau surface roughness (Ra) cenderung meningkat (semakin kasar) jika printing speed semakin ditingkatkan.


Sign in / Sign up

Export Citation Format

Share Document