scholarly journals The Potential Use of Raw Iron Ore in Fischer-Tropsch Synthesis

2021 ◽  
Vol 8 ◽  
pp. 99-115
Author(s):  
Samuel Mubenesha ◽  
Chike George Okoye-Chine ◽  
Franscina Katuchero Ramutsindela ◽  
Joshua Gorimbo ◽  
Mahluli Moyo ◽  
...  

Fischer-Tropsch (FT) synthesis has been studied in the literature as a greener pathway to cleaner and sustainable hydrocarbons production. However, the cost to upscale laboratory FT formulations to pilot scale is significantly expensive. This work proposes a cheaper and scalable low-temperature FT modified iron ore catalyst that is mechanically suited for fixed bed reactors. The mechanical strength reported in this investigation was three times more than commercial alumina spherical pellets and, therefore, suitable for pilot scale scenarios. A manufacturing cost analysis of iron ore was estimated to be US$38.45/kg using the CatCost model, and the conventionally prepared iron catalyst was US$71.44/kg using the same model. The manufacturing cost estimations of modified iron ore were found to be 46% cheaper than a conventional commercial iron catalyst. The catalytic performance of the modified iron ore catalyst showed a CO conversion of 72.1% ±4.24, with WGS and C5+ selectivity 48.6% ±1.96 and 83.2% ± 5.24, respectively. These findings were comparable (both in CO conversion and product selectivity) to the ones reported by other researchers.

2013 ◽  
Vol 832 ◽  
pp. 15-20 ◽  
Author(s):  
Sara Faiz Hanna Tasfy ◽  
Noor Asmawati Mohd Zabidi ◽  
Duvvuri Subbarao

Iron-based nanocatalyst was prepared via impregnation method on SiO2 support. The effects of promoters, namely, K and Cu, on the physical properties and catalytic performance in FTS have been investigated. The FTS performance of the synthesized nanocatalysts was examined in a fixed-bed microreactor at temperature of 523K, atmospheric pressure, 1.5 reactant ratio (H2/CO) and space velocity of 3L/g-cat.h. In FTS reaction, Cu promoter resulted in a lower CO conversion and C5+ hydrocarbons selectivity but higher selectivity to the lighter hydrocarbons (C1-C4) comparedto those obtained using the K promoter. Higher CO conversion (28.9%) and C5+ hydrocarbons selectivity (54.4%) were obtained using K as a promoter compared to that of Cu promoter. However, the K-promoted nanocatalyst resulted in a lower CO conversion but higher selectivity of the heavy hydrocarbons (C5+) compared to those obtained using the un-promoted nanocatalyst.


2013 ◽  
Vol 805-806 ◽  
pp. 232-235 ◽  
Author(s):  
Hong Yan Ban ◽  
Zi Wei Wang ◽  
Zhi Qiang Wang ◽  
Zhi Gang Fang

The catalyst prepared using the AC as support showed remarkably improvement of reaction performance. The improvement of the reaction performance obtained for the AC is probably ascribed to the physical structure and surface chemistry of AC. The support and corresponding catalyst are characterized by N2 adsorption. Catalytic performance of the catalyst during FT synthesis was excellent. Syngas conversion was about 74%, whereas methane selectivity was low (~2 %).


Author(s):  
Shahram Sharifnia ◽  
A. Khodadadi ◽  
Y. Mortazavi

The present study examines the effect of hydrogen distribution (HD) along a Co/SiO2 catalyst bed on Fischer-Tropsch (FT) synthesis. The synthesis is performed under two pressures of 1.0 and 9.0 atm and different H2/CO ratios. The results are compared to those of the usual co-feed, in which both CO and H2 are introduced to the bed inlet. By HD strategy, the methane selectivity is suppressed by as much as 25% and the C11+ selectivity is enhanced up to 26%. CO conversion and product selectivity exhibited a strong dependence on the operating pressure and H2/CO ratio, when hydrogen is distributed.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 572 ◽  
Author(s):  
Omid Akbarzadeh ◽  
Noor Mohd Zabidi ◽  
Yasmin Abdul Wahab ◽  
Nor Hamizi ◽  
Zaira Chowdhury ◽  
...  

Pre-treating the multi-walled carbon nanotubes (CNTs) support by refluxing in 35 vol% nitric acid followed by heating at the temperature of 600 to 900 °C resulted in the formation of defects on the CNTs. Increasing the temperature of the pre-treatment of the CNTs from 600 °C to 900 °C, enhanced the fraction of cobalt-oxide nanoparticles encapsulated in the channels of CNTs from 31% to 70%. The performance of Co/CNTs in Fischer-Tropsch synthesis (FTS) was evaluated in a fixed-bed micro-reactor at a temperature of 240 °C and a pressure of 2.0 MPa. The highest CO conversion obtained over Co/CNTs.A.900 was 59% and it dropped by ~3% after 130 h of time-on-stream. However, maximum CO conversion using Co/CNTs.A.600 catalysts was 28% and it decreased rapidly by about 54% after 130 h of time-on-stream. These findings show that the combined acid and thermal pre-treatment of CNTs support at 900 °C has improved the stability and activity of the Co/CNTs catalyst in FTS.


2012 ◽  
Vol 142 (11) ◽  
pp. 1382-1387 ◽  
Author(s):  
Dragomir B. Bukur ◽  
Zhendong Pan ◽  
Wenping Ma ◽  
Gary Jacobs ◽  
Burtron H. Davis

2021 ◽  
Vol 1 (1-2) ◽  
pp. 15
Author(s):  
Elham Yaghoobpour ◽  
Yahya Zamani ◽  
Saeed Zarrinpashne ◽  
Akbar Zamaniyan

Promoters and their loading amount have crucial roles in cobalt Fischer – Tropsch catalysts. In this regard, the effects of vanadium oxide (V2O5) as a proposed promoter for Co catalyst supported on TiO2 have been investigated. Three catalysts with 0, 1, and 3 wt.% of V2O5 promoter loading are prepared by the incipient wetness impregnation method, and characterized by the BET surface area analyzer, XRD, H2-TPR, and TEM techniques. The fixed-bed reactor was employed for their evaluations. It was found that the catalyst containing 1 wt.% V2O5 has the best performance among the evaluated catalysts, demonstrating remarkable selectivity: 92 % C5+ and 5.7 % CH4, together with preserving the amount of CO conversion compared to the unpromoted catalyst. Furthermore, it is reported that the excess addition of V2O5 promoter (> 1 wt.%) in the introduced catalyst leads to the detrimental effect on the CO conversion and C5+ selectivity, mainly owing to diminished active sites by V2O5 loading.


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Teuku Mukhriza ◽  
Hartati Oktarina

Fischer-Tropsch (FT) Synthesis has been widely known for centuries as the process of converting syngas to liquid fuels. Several reactors including Slurry bubble column, fluidized-bed, and fixed bed reactors have been used for FTS on an industrial scale. Although science has seen remarkable development in technology for FT synthesis, the industry still faces challenges in optimizations of process parameters and achieved desired selectivity.  Extensive research has been continuously conducted to seek the best FT reactor offering heat uniformity and efficient heat transfer across the reactor to increase the catalytic activity and its lifetime. Dielectric Barrier Discharge (DBD) plasma has become one of the options to deal with these issues. This reactor work under low temperature delivers a synergistic effect between plasma and catalyst to break H2 and CO bond. DBD plasma is also suitable for feedstock with high H2/CO molar ratios. It is also found that FT catalyst such as cobalt catalyst used in DBD plasma was well dispersed on the support which in turn favour the selectivity toward liquid hydrocarbon.


Symmetry ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 7 ◽  
Author(s):  
Omid Akbarzadeh ◽  
Noor Mohd Zabidi ◽  
Yasmin Abdul Wahab ◽  
Nor Hamizi ◽  
Zaira Chowdhury ◽  
...  

The strong electrostatic adsorption (SEA) method was applied to the synthesis of a cobalt (Co) catalyst on a multi-walled carbon nanotube (CNT) support. In order to uptake more of the cobalt cluster with higher dispersion, the CNT was functionalized via acid and thermal treatment. The Co/CNT catalyst samples were characterized by a range of methods including the Brunauer–Emmet–Teller (BET) surface area analyzer, transmission electron microscopy (TEM), X-ray powder diffraction (XRD) analysis, atomic absorption spectroscopy (AAS), and H2-temperature programmed reduction (H2-TPR) analysis. The data from the TEM images revealed that the catalyst was highly dispersed over the external and internal walls of the CNT and that it demonstrated a narrow particle size of 6–8 nm. In addition, the data from the H2-TPR studies showed a lower reduction temperature (420 °C) for the pre-treated catalyst samples. Furthermore, a Fischer–Tropsch synthesis (FTS) reaction was chosen to evaluate the Co/CNT catalyst performance by using a fixed-bed microreactor at different parameters. Finally finding the optimum value of the cobalt loading percentage, particle size, and calcination conditions of Co/CNT catalyst resulted in a CO conversion and C5+ selectivity of 58.7% and 83.2%, respectively.


2013 ◽  
Vol 781-784 ◽  
pp. 186-189
Author(s):  
Yin Yan Wang ◽  
Feng Hua Bai ◽  
Ang Li ◽  
Bo Zhao ◽  
Hai Quan Su

New type of Co-based catalyst was prepared using (CO)6Co2CC(COOH)2 as precursor supported on γ-Al2O3 support. The effects of pretreatment pressures on the catalysts properties and the F-T synthesis performance were investigated in details. Combined with TEM characterization technology, it was found that under different pretreatment pressures (0 MPa, 1.0 MPa, 2.0 MPa), the structure of carbonyl clusters underwent different changes. Moreover, the aggregation degree of cobalt species depends on the pretreated pressure applied. In addition, the catalytic performance of the cobalt carbonyl catalyst pretreated with different pressures was performed and both CO conversion and C5+ selectivity exhibited the order of Co2/2MPa/Al2O3 > Co2/1MPa/Al2O3 > Co2/0MPa/Al2O3.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 846
Author(s):  
Omid Akbarzadeh ◽  
Solhe F. Alshahateet ◽  
Noor Asmawati Mohd Zabidi ◽  
Seyedehmaryam Moosavi ◽  
Amir Kordijazi ◽  
...  

The effect of reaction temperature, syngas space velocity, and catalyst stability on Fischer-Tropsch reaction was investigated using a fixed-bed microreactor. Cobalt and Manganese bimetallic catalysts on carbon nanotubes (CNT) support (Co-Mn/CNT) were synthesized via the strong electrostatic adsorption (SEA) method. For testing the performance of the catalyst, Co-Mn/CNT catalysts with four different manganese percentages (0, 5, 10, 15, and 20%) were synthesized. Synthesized catalysts were then analyzed by TEM, FESEM, atomic absorption spectrometry (AAS), and zeta potential sizer. In this study, the temperature was varied from 200 to 280 °C and syngas space velocity was varied from 0.5 to 4.5 L/g.h. Results showed an increasing reaction temperature from 200 °C to 280 °C with reaction pressure of 20 atm, the Space velocity of 2.5 L/h.g and H2/CO ratio of 2, lead to the rise of CO % conversion from 59.5% to 88.2% and an increase for C5+ selectivity from 83.2% to 85.8%. When compared to the other catalyst formulation, the catalyst sample with 95% cobalt and 5% manganese on CNT support (95Co5Mn/CNT) performed more stable for 48 h on stream.


Sign in / Sign up

Export Citation Format

Share Document