scholarly journals Strength Analysis of Traffic Sign Frame

2021 ◽  
Vol 51 (1) ◽  
pp. 88-93
Author(s):  
Giedrius Gedrimas ◽  
Artūras Sabaliauskas

Traffic sign frame has to be safe, reliable, and withstand the loads to which it can be exposed during exploitation. This type of product strength is determined by the calculations and tests, which are described in the standards. Prior to the production of a prototype, it is useful to perform strength analysis, using analytical or numerical methods.  The article presents the analysis of the existing frame lightening and the strength of lightened frames, using computer-aided design and analysis programs. The analysis showed that the model of this type of product can be lightened, but not all frames can withstand  the loads.The paper has been prepared on the basis of G. Gedrimas’ Master Thesis.

2018 ◽  
Vol 875 ◽  
pp. 71-76
Author(s):  
Victor Kryaskov ◽  
Andrey Vashurin ◽  
Anton Tumasov ◽  
Alexey Vasiliev

This paper is dedicated to the issues of designing of outriggers for avoidance of vehicle tilting during its stability tests. An analysis of existing types of outriggers was done by authors as well as legislative requirements on them. The reliable and well-timed operation of outriggers largely depends on the height of their positioning on a vehicle. In order to determine this important parameter a special methodic of determining the tipping angle of the vehicle with the use of computer-aided design (CAD) was composed by authors. The article also contains some main principles of strength analysis of the structure a very important part of which became the necessity of determination of coefficient of friction between the outrigger sliders and the supporting surface. This coefficient has a direct impact on the value of transverse forces appearing at the ends of outrigger beams.


2020 ◽  
Vol 9 (4) ◽  
pp. 142-150
Author(s):  
P. Popikov ◽  
Vladimir Zelikov ◽  
Konstantin Yakovlev ◽  
K. Menyaylov ◽  
Mikhail Shabanov ◽  
...  

The article is devoted to the problems of simulation of the working process of a truck-mounted crane using modern computer-aided design systems and applications for engineering calculations. Currently, analytical methods are mainly used to model the operation of manipulator technology, such as “manual” compilation and solution of Lagrange equations of the second order, or even simpler evaluative calculations based only on basic concepts of theoretical mechanics. However, such objects consist of many parts that are in a complex rotational motion and contact interaction with each other. If such complex systems are modeled by the indicated analytical methods, one has to introduce a number of assumptions that greatly simplify the mathematical model. The level of its adequacy is low. Also recently, numerical methods for modeling mechanisms that are implemented through programming languages by using a detailed description of the process under study are often used abroad. An alternative to these methods is the use of computer-aided design systems in which numerical methods are built-in at the core level of the program and require setting the basic geometric, dynamic and kinematic parameters of the mechanism and the environment, after which they can calculate the functioning parameters of the object under study. The process of creating a simulation model of a truck mounted crane, which is an analogue of an existing laboratory setup, has been considered. To do this, a 3D model of the manipulator in the SolidWorks CAD environment has been developed. The creation technique and the main features of the obtained simulation model have been described


Author(s):  
S. A. Bratchikov ◽  
E. A. Abramova

Objective. The objective of the study is to consider the application field of modern device development and design methods using the means of 3D modeling and simulation of physical processes. The validity of the application and criteria for the reliability of the results obtained in the sequential design of the mechanical part of the electric drive and the control system are investigated.Methods. Methods of model representation of 3D objects in computer-aided design systems are considered, as well as methods for solving problems of determining strain under the applied load. Using the example of an elementary joint, the obtained results of the dynamic characteristic of an elastic shaft in a computer-aided design system are compared with those calculated analytically.Results. The article defines the basic principles and relations applicable to describing the shape of 3D models. Methods are shown by which it is possible to obtain information about the mass-centering model characteristics. The relations that form the basis of numerical methods for solving problems of determining elastic deformations of bodies are also given. The error that can occur when using insufficiently small elementary volumes in solving the problem of determining elastic deformation is shown.Conclusion. The use of 3D modeling in the design of complex technical systems is justified and speeds up production processes. However, numerical methods cannot always give an accurate result leading to the need to either increase the complexity of calculations or additionally adjust some designed device parameters.


Sign in / Sign up

Export Citation Format

Share Document