scholarly journals Generalized squared remainder minimization method for solving multi-term fractional differential equations

2021 ◽  
Vol 26 (1) ◽  
pp. 57-71
Author(s):  
Mir Sajjad Hashemi ◽  
Mustafa Inc ◽  
Somayeh Hajikhah

In this paper, we introduce a generalization of the squared remainder minimization method for solving multi-term fractional differential equations. We restrict our attention to linear equations. Approximate solutions of these equations are considered in terms of linearly independent functions. We change our problem into a minimization problem. Finally, the Lagrange-multiplier method is used to minimize the resultant problem. The convergence of this approach is discussed and theoretically investigated. Some relevant examples are investigated to illustrate the accuracy of the method, and obtained results are compared with other methods to show the power of applied method.

Author(s):  
Constantin Bota ◽  
Bogdan Căruntu

AbstractIn this paper a new way to compute analytic approximate polynomial solutions for a class of nonlinear variable order fractional differential equations is proposed, based on the Polynomial Least Squares Method (PLSM). In order to emphasize the accuracy and the efficiency of the method several examples are included.


Author(s):  
S. O. Ajibola ◽  
E. O. Oghre ◽  
A. G. Ariwayo ◽  
P. O. Olatunji

By fractional generalised Boussinesq equations we mean equations of the form \begin{equation} \Delta\equiv D_{t}^{2\alpha}-[\mathcal{N}(u)]_{xx}-u_{xxxx}=0, \: 0<\alpha\le1,\label{main}\nonumber \end{equation} where $\mathcal{N}(u)$ is a differentiable function and $\mathcal{N}_{uu}\ne0$ (to ensure nonlinearity). In this paper we lay emphasis on the cubic Boussinesq and Boussinesq-like equations of fractional order and we apply the Laplace homotopy analysis method (LHAM) for their rational and solitary wave solutions respectively. It is true that nonlinear fractional differential equations are often difficult to solve for their {\em exact} solutions and this single reason has prompted researchers over the years to come up with different methods and approach for their {\em analytic approximate} solutions. Most of these methods require huge computations which are sometimes complicated and a very good knowledge of computer aided softwares (CAS) are usually needed. To bridge this gap, we propose a method that requires no linearization, perturbation or any particularly restrictive assumption that can be easily used to solve strongly nonlinear fractional differential equations by hand and simple computer computations with a very quick run time. For the closed form solution, we set $\alpha =1$ for each of the solutions and our results coincides with those of others in the literature.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Wenjin Li ◽  
Yanni Pang

We study a type of iterative method and apply it to time-fractional Swift-Hohenberg equation with initial value. Using this iterative method, we obtain the approximate analytic solutions with numerical figures to initial value problems, which indicates that such iterative method is effective and simple in constructing approximate solutions to Cauchy problems of time-fractional differential equations.


Author(s):  
Djurdjica Takači ◽  
Arpad Takači ◽  
Aleksandar Takači

AbstractFuzzy fractional differential equations with fuzzy coefficients are analyzed in the frame of Mikusiński operators. Systems of fuzzy operational algebraic equations are obtained, in view of the definition of fuzzy derivatives. Their exact and approximate solutions are constructed and their characters are analyzed, considering them as the corresponding solutions of the given problem. The described procedure of the construction of solutions is illustrated on an example and the obtained approximate solutions of the considered problems are visualized by using the GeoGebra software package.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 724
Author(s):  
Kateryna Marynets

We studied one essentially nonlinear two–point boundary value problem for a system of fractional differential equations. An original parametrization technique and a dichotomy-type approach led to investigation of solutions of two “model”-type fractional boundary value problems, containing some artificially introduced parameters. The approximate solutions of these problems were constructed analytically, while the numerical values of the parameters were determined as solutions of the so-called “bifurcation” equations.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2354
Author(s):  
Shazad Shawki Ahmed ◽  
Shabaz Jalil MohammedFaeq

The approximate solutions of Fredholm–Volterra integro-differential equations of multi-fractional order within the Caputo sense (F-VIFDEs) under mixed conditions are presented in this article apply a collocation points technique based completely on Bessel polynomials of the first kind. This new approach depends particularly on transforming the linear equation and conditions into the matrix relations (some time symmetry matrix), which results in resolving a linear algebraic equation with unknown generalized Bessel coefficients. Numerical examples are given to show the technique’s validity and application, and comparisons are made with existing results by applying this process in order to express these solutions, most general programs are written in Python V.3.8.8 (2021).


2020 ◽  
Author(s):  
Atimad Harir ◽  
Said Melliani ◽  
Lalla Saadia Chadli

In this paper, the Cauchy problem of fuzzy fractional differential equationsTγut=Ftut, ut0=u0,


Sign in / Sign up

Export Citation Format

Share Document