scholarly journals Double Hopf bifurcation of a diffusive predator–prey system with strong Allee effect and two delays

2021 ◽  
Vol 26 (1) ◽  
pp. 72-92
Author(s):  
Yuying Liu ◽  
Junjie Wei

In this paper, we consider a diffusive predator–prey system with strong Allee effect and two delays. First, we explore the stability region of the positive constant steady state by calculating the stability switching curves. Then we derive the Hopf and double Hopf bifurcation theorem via the crossing directions of the stability switching curves. Moreover, we calculate the normal forms near the double Hopf singularities by taking two delays as parameters. We carry out some numerical simulations for illustrating the theoretical results. Both theoretical analysis and numerical simulation show that the system near double Hopf singularity has rich dynamics, including stable spatially homogeneous and inhomogeneous periodic solutions. Finally, we evaluate the influence of two parameters on the existence of double Hopf bifurcation.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Qingsong Liu ◽  
Yiping Lin ◽  
Jingnan Cao

A modified Leslie-Gower predator-prey system with two delays is investigated. By choosingτ1andτ2as bifurcation parameters, we show that the Hopf bifurcations occur when time delay crosses some critical values. Moreover, we derive the equation describing the flow on the center manifold; then we give the formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the theoretical results and chaotic behaviors are observed. Finally, using a global Hopf bifurcation theorem for functional differential equations, we show the global existence of the periodic solutions.


2013 ◽  
Vol 23 (12) ◽  
pp. 1350194
Author(s):  
GAO-XIANG YANG ◽  
JIAN XU

In this paper, a three-species predator–prey system with diffusion and two delays is investigated. By taking the sum of two delays as a bifurcation parameter, it is found that the spatially homogeneous Hopf bifurcation can occur as the sum of two delays crosses a critical value. The direction of Hopf bifurcation and the stability of the bifurcating periodic solution are obtained by employing the center manifold theorem and the normal form theory. In addition, some numerical simulations are also given to illustrate the theoretical analysis.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Juan Liu ◽  
Changwei Sun ◽  
Yimin Li

This paper is concerned with a Gause-type predator-prey system with two delays. Firstly, we study the stability and the existence of Hopf bifurcation at the coexistence equilibrium by analyzing the distribution of the roots of the associated characteristic equation. A group of sufficient conditions for the existence of Hopf bifurcation is obtained. Secondly, an explicit formula for determining the stability and the direction of periodic solutions that bifurcate from Hopf bifurcation is derived by using the normal form theory and center manifold argument. Finally, some numerical simulations are carried out to illustrate the main theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ruiwen Wu ◽  
Xiuxiang Liu

We consider a ratio-dependent predator-prey system with a mate-finding Allee effect on prey. The stability properties of the equilibria and a complete bifurcation analysis, including the existence of a saddle-node, a Hopf bifurcation, and, a Bogdanov-Takens bifurcations, have been proved theoretically and numerically. The blow-up method has been applied to investigate the structure of a neighborhood of the origin. Our mathematical results show the mate-finding Allee effect can reduce the complexity of system behaviors by making the complicated equilibrium less complicated, and it can be a destabilizing force as well, which makes the system has a high possibility of being threatened with extinction in ecology.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Heping Jiang ◽  
Huiping Fang ◽  
Yongfeng Wu

Abstract This paper mainly aims to consider the dynamical behaviors of a diffusive delayed predator–prey system with Smith growth and herd behavior subject to the homogeneous Neumann boundary condition. For the analysis of the predator–prey model, we have studied the existence of Hopf bifurcation by analyzing the distribution of the roots of associated characteristic equation. Then we have proved the stability of the periodic solution by calculating the normal form on the center of manifold which is associated to the Hopf bifurcation points. Some numerical simulations are also carried out in order to validate our analysis findings. The implications of our analytical and numerical findings are discussed critically.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Shaoli Wang ◽  
Zhihao Ge

The Hopf bifurcation for a predator-prey system with -logistic growth and prey refuge is studied. It is shown that the ODEs undergo a Hopf bifurcation at the positive equilibrium when the prey refuge rate or the index- passed through some critical values. Time delay could be considered as a bifurcation parameter for DDEs, and using the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction of bifurcations and the stability and other properties of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the main results.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Fengying Wei ◽  
Lanqi Wu ◽  
Yuzhi Fang

A kind of delayed predator-prey system with harvesting is considered in this paper. The influence of harvesting and delay is investigated. Our results show that Hopf bifurcations occur as the delayτpasses through critical values. By using of normal form theory and center manifold theorem, the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are obtained. Finally, numerical simulations are given to support our theoretical predictions.


2016 ◽  
Vol 26 (10) ◽  
pp. 1650165 ◽  
Author(s):  
Haiyin Li ◽  
Gang Meng ◽  
Zhikun She

In this paper, we investigate the stability and Hopf bifurcation of a delayed density-dependent predator–prey system with Beddington–DeAngelis functional response, where not only the prey density dependence but also the predator density dependence are considered such that the studied predator–prey system conforms to the realistically biological environment. We start with the geometric criterion introduced by Beretta and Kuang [2002] and then investigate the stability of the positive equilibrium and the stability switches of the system with respect to the delay parameter [Formula: see text]. Especially, we generalize the geometric criterion in [Beretta & Kuang, 2002] by introducing the condition [Formula: see text] which can be assured by the condition [Formula: see text], and adopting the technique of lifting to define the function [Formula: see text] for alternatively determining stability switches at the zeroes of [Formula: see text]s. Afterwards, by the Poincaré normal form for Hopf bifurcation in [Kuznetsov, 1998] and the bifurcation formulae in [Hassard et al., 1981], we qualitatively analyze the properties for the occurring Hopf bifurcations of the system (3). Finally, an example with numerical simulations is given to illustrate the obtained results.


Sign in / Sign up

Export Citation Format

Share Document