scholarly journals Relative controllability of impulsive multi-delay differential systems

2022 ◽  
Vol 27 (1) ◽  
pp. 70-90
Author(s):  
Zhongli You ◽  
Michal Fečkan ◽  
JinRong Wang ◽  
Donal O’Regan

In this paper, relative controllability of impulsive multi-delay differential systems in finite dimensional space are studied. By introducing the impulsive multi-delay Gramian matrix, a necessary and sufficient condition, and the Gramian criteria, for the relative controllability of linear systems is given. Using Krasnoselskii’s fixed point theorem, a sufficient condition for controllability of semilinear systems is obtained. Numerically examples are given to illustrate our theoretically results.

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 722
Author(s):  
Shyam Sundar Santra ◽  
Khaled Mohamed Khedher ◽  
Osama Moaaz ◽  
Ali Muhib ◽  
Shao-Wen Yao

In this work, we aimed to obtain sufficient and necessary conditions for the oscillatory or asymptotic behavior of an impulsive differential system. It is easy to notice that most works that study the oscillation are concerned only with sufficient conditions and without impulses, so our results extend and complement previous results in the literature. Further, we provide two examples to illustrate the main results.


2017 ◽  
Vol 1 (1) ◽  
pp. 22 ◽  
Author(s):  
Rawad Abdulghafor ◽  
Sherzod Turaev ◽  
Akram Zeki

We define a complementary stochastic quadratic operator on finite-dimensional space as a new sub-class of quadratic stochastic operator. We give necessary and sufficient conditions for complementary stochastic quadratic operator.  


2021 ◽  
Vol 174 (1) ◽  
Author(s):  
D. Franco ◽  
C. Guiver ◽  
H. Logemann

AbstractPersistence and stability properties are considered for a class of forced positive nonlinear delay-differential systems which arise in mathematical ecology and other applied contexts. The inclusion of forcing incorporates the effects of control actions (such as harvesting or breeding programmes in an ecological setting), disturbances induced by seasonal or environmental variation, or migration. We provide necessary and sufficient conditions under which the states of these models are semi-globally persistent, uniformly with respect to the initial conditions and forcing terms. Under mild assumptions, the model under consideration naturally admits two steady states (equilibria) when unforced: the origin and a unique non-zero steady state. We present sufficient conditions for the non-zero steady state to be stable in a sense which is reminiscent of input-to-state stability, a stability notion for forced systems developed in control theory. In the absence of forcing, our input-to-sate stability concept is identical to semi-global exponential stability.


Sign in / Sign up

Export Citation Format

Share Document