scholarly journals Dynamics of the Cavity Radiation of a Correlated Emis-sion Laser Coupled to a Two-Mode Thermal Reservoir

2021 ◽  
Vol 66 (12) ◽  
pp. 1027
Author(s):  
B. Alemu ◽  
Ch. Gashu ◽  
E. Mosisa ◽  
T. Abebe

In this paper, the quantum properties of the cavity light beam produced by a coherently driven nondegenerate three-level laser with an open cavity and coupled to a two-mode thermal reservoir are thoroughly analyzed. We have carried out our analysis by putting the noise operators associated with the thermal reservoir in normal order. Here we discussed more the effect of thermal light and the spontaneous emission on the dynamics of the quantum processes. It is found that the maximum degree of intracavity squeezing 43% below the vacuum-state level. Moreover, the presence of thermal light leads to decrease the degree of entanglement.

2018 ◽  
Vol 63 (11) ◽  
pp. 969 ◽  
Author(s):  
T. Abebe

The analysis of quantum properties of the cavity light produced by a coherently driven nondegenerate three-level laser possessing an open cavity and coupled to a two-mode vacuum reservoir is presented. The normal ordering of noise operators associated with the vacuum reservoir is considered. Applying the solutions of the equations of evolution for the expectation values of the atomic operators and the quantum Langevin equations for the cavity mode operators, the squeezing properties, entanglement amplification, and the normalized second-order correlation function of the cavity radiation are described. The three-level laser generates squeezed light under certain conditions, with maximum intracavity squeezing being 50% below the vacuum-state level. Moreover, it is found that the presence of spontaneous emission increases the quadrature squeezing and entanglement and decreses the mean photon number of the two-mode cavity radiation.


2021 ◽  
Vol 66 (7) ◽  
pp. 551
Author(s):  
T. Abebe ◽  
Ch. Gashu

The quantum properties of a nondegenerate three-level cascade laser coupled to a two-mode vacuum reservoir are throughly analyzed with the use of the pertinent master equation and stochastic differential equations associated with the normal ordering. Particularly, the enhancement of squeezing and the amplification of photon entanglement of the two-mode cavity light are investigated. It is found that the two cavity modes are strongly entangled, and the degree of entanglement is directly related to the two-mode squeezing. Moreover, the squeezing and entanglement of the cavity radiation enhance with the rate of atomic injection.


2016 ◽  
Vol 30 (06) ◽  
pp. 1650024
Author(s):  
Solomon Getahun

We analyze electrically pumped atomic cavity coupled to a two-mode vacuum reservoirs via a single-port mirror whose open cavity contains N nondegenerate three-level cascade atoms. We carry out our analysis by putting the noise operators associated with a vacuum reservoir in normal order. It is found that unlike the mean photon number, the quadrature squeezing and the degree of entanglement do not depend on the number of atoms. This implies that the quadrature squeezing and the degree of entanglement of the cavity light do not depend on the number of photons. We have also shown that the light generated by the three-level laser is in a squeezed and entangled state, with maximum quadrature squeezing and degree of entanglement being 50%. Moreover, the mean photon number of the system in which the laser operating at threshold and above threshold does not depend on the spontaneous decay constant.


2021 ◽  
Vol 66 (9) ◽  
pp. 761
Author(s):  
D. Ayehu ◽  
A. Chane

We study the statistical and squeezing properties of the cavity light produced by a degenerate three-level laser with the use of the solution of the pertinent quantum Langevin equation. Moreover, applying the density operator to the cavity radiation superposition, we investigated the quantum properties of the superposed cavity light beams generated by a pair of degenerate three-level lasers. Superposing the cavity radiation increases the mean and the variance of the photon number without affecting the quadrature squeezing. It is observed that the degree of squeezing of the separate cavity radiation, as well as the superposed cavity radiation, increases with the rate at which the atoms are injected into the cavity. We have also shown that the mean photon number of the superposed cavity radiation is the sum of the mean photon numbers of the individual cavity radiation. However, the variance of the photon number of the superposed cavity radiation turns out to be four times that of the component cavity radiation.


2021 ◽  
pp. 1-8
Author(s):  
Ebisa Mosisa Kanea ◽  

In this paper, quantum entanglement of correlated two-mode light generated by a three-level laser coupled to a two-mode squeezed vacuum reservoir is thoroughly analyzed using different inseparability criteria, using the master equation, we obtain the stochastic dierential equation and the correlation properties of the noise forces associated with the normal ordering. Next, we study the photon entanglement by considering different inseparability criteria. In particular, the criteria applied are Duan-Giedke-Cirac-Zoller (DGCZ) criterion, logarithmic negativity, Hillery-Zubairy, and Cauchy-Schwartz inequality and we found that the presence of the squeezing parameter leads to an increase in the degree of entanglement. Moreover, the linear gain coecient significantly achieved the degree of entanglement for the cavity radiation


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tamirat Abebe ◽  
Tewodros Yirgashewa ◽  
Abebe Belay

We analyze a nondegenerate three-level cascade laser with an open cavity and coupled to a two-mode thermal reservoir employing the stochastic differential equations for atomic operators associated with the normal ordering. Applying the large-time approximation scheme, we obtain the solutions for the corresponding equations of evolution of the expectation values of atomic operators. Furthermore, employing the resulting solutions, we studied the photon as well as cavity atomic-state entanglement amplification of the cavity radiation.


2005 ◽  
Vol 19 (11) ◽  
pp. 1965-1971 ◽  
Author(s):  
Z. H. PENG ◽  
J. ZOU ◽  
B. SHAO ◽  
J. F. CAI

In this paper we consider two distant mesoscopic superconducting quantum interference device (SQUID) rings A and B in the presence of two-mode squeezed vacuum state field, and aim to see the effect of the field on the correlation of supercurrents in the two rings. We know the degree of entanglement of the two-mode squeezed vacuum state increases with the squeezing parameter r. In this paper we find that the correlation of the supercurrents increases with the parameter r too, meaning that the correlation of the supercurrents increases with the degree of entanglement of the field.


2021 ◽  
Vol 66 (3) ◽  
pp. 206
Author(s):  
M. Molla Gessesse

The statistical and squeezing properties of the cavity light produced by a three-level laser are studied. In the laser, N three-level atoms in an open cavity are coupled with a two-mode vacuum reservoir and are pumped to the top level by means of the electron bombardment. Applying the steady-state solutions of the equations of evolution of the expectation values of the atomic operators and the quantum Langevin equations for the cavity mode operators, we have obtained the global and local photon statistics for single-mode cavity light beams and for two-mode cavity light. It is found that the global mean photon number and the global photon-number variance of the light emitted from the top are greater than those for the light emitted from intermediate level. The cavity lights emitted from the top and intermediate levels can be separately in a chaotic state under certain conditions. However, the two-mode cavity light is in a squeezed state under certain conditions. We have established that the maximum quadrature squeezing of the two-mode cavity light to be about 46% below the coherent-state level. The presence of the vacuum reservoir noise has the effect of increasing the photon-number variance and decreasing the quadrature squeezing of the cavity light but has no effect on the mean photon number. We have shown that the local mean photon number and photon number variance of the cavity light approach the global mean photon number and photon number variance of the cavity light as the frequency interval increases.


Sign in / Sign up

Export Citation Format

Share Document