scholarly journals Arbuscular mycorrhiza symbiosis in quinoa (Chenopodium quinoa Willd.): A systematic review

Author(s):  
Miguel Angel Garcia-Parra ◽  
Luz Angela Cuellar-Rodríguez ◽  
Helber Enrique Balaguera López

The crop of quinoa has gained relevance during the last decade in different parts of the world, due to its adaptability to difficult edaphic and climatic conditions and the great nutritional potential of its seeds. However, climate change scenarios are increasingly adverse, so the search for strategies that favor greater adaptability of quinoa to areas where other crops fail to adapt is a scientific priority. For this reason, a systematic review was carried out, based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis methodology, with documents published on Scopus and Clarivate Web of Science databases. This methodology describes the diversity of fungi that favors symbiosis and the services offered by arbuscular mycorrhizal fungi in the physiological activity of the quinoa plant, in addition to their interaction with the edaphic conditions, mainly related to nitrogen and phosphorus. The results identified a projection of interest in research related to the symbiosis between these two organisms, but a very limited advance in relation to the study that has been developed around the microbiological activity of quinoa in the soil.

2021 ◽  
Vol 12 ◽  
Author(s):  
Mingsen Qin ◽  
Jean-Pascal Miranda ◽  
Yun Tang ◽  
Wangrong Wei ◽  
Yongjun Liu ◽  
...  

Numerous studies have confirmed that arbuscular mycorrhizal fungi (AMF) can promote plant nitrogen and phosphorus absorption, and prime systemic plant defense to plant pathogenic microbes. Despite that, the information on the interaction between AMF and plant pathogenic microbes is limited, especially the influence of plant pathogenic microbes on the effect of AMF promoting plant growth. In this study, 650 independent paired-wise observations from 136 published papers were collected and used to calculate the different effect of AMF with plant pathogenic microbes (DAPP) in promoting plant growth through meta-analysis. The results showed that AMF had a higher effect size on plant growth with pathogenic microbes comparing to without pathogenic microbes, including the significant effects in shoot and total fresh biomass, and shoot, root, and total dry biomass. The results of the selection models revealed that the most important factor determining the DAPP on plant dry biomass was the harm level of plant pathogenic microbes on the plant dry biomass, which was negatively correlated. Furthermore, the change of AMF root length colonization (RLC) was the sub-important factor, which was positively correlated with the DAPP. Taken together, these results have implications for understanding the potential and application of AMF in agroecosystems.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


Ecology ◽  
2017 ◽  
Vol 98 (8) ◽  
pp. 2111-2119 ◽  
Author(s):  
Camille S. Delavaux ◽  
Lauren M. Smith-Ramesh ◽  
Sara E. Kuebbing

2020 ◽  
Vol 11 ◽  
Author(s):  
Khondoker M. G. Dastogeer ◽  
Mst Ishrat Zahan ◽  
Md. Tahjib-Ul-Arif ◽  
Mst Arjina Akter ◽  
Shin Okazaki

Soil salinity often hinders plant productivity in both natural and agricultural settings. Arbuscular mycorrhizal fungal (AMF) symbionts can mediate plant stress responses by enhancing salinity tolerance, but less attention has been devoted to measuring these effects across plant-AMF studies. We performed a meta-analysis of published studies to determine how AMF symbionts influence plant responses under non-stressed vs. salt-stressed conditions. Compared to non-AMF plants, AMF plants had significantly higher shoot and root biomass (p < 0.0001) both under non-stressed conditions and in the presence of varying levels of NaCl salinity in soil, and the differences became more prominent as the salinity stress increased. Categorical analyses revealed that the accumulation of plant shoot and root biomass was influenced by various factors, such as the host life cycle and lifestyle, the fungal group, and the duration of the AMF and salinity treatments. More specifically, the effect of Funneliformis on plant shoot biomass was more prominent as the salinity level increased. Additionally, under stress, AMF increased shoot biomass more on plants that are dicots, plants that have nodulation capacity and plants that use the C3 plant photosynthetic pathway. When plants experienced short-term stress (<2 weeks), the effect of AMF was not apparent, but under longer-term stress (>4 weeks), AMF had a distinct effect on the plant response. For the first time, we observed significant phylogenetic signals in plants and mycorrhizal species in terms of their shoot biomass response to moderate levels of salinity stress, i.e., closely related plants had more similar responses, and closely related mycorrhizal species had similar effects than distantly related species. In contrast, the root biomass accumulation trait was related to fungal phylogeny only under non-stressed conditions and not under stressed conditions. Additionally, the influence of AMF on plant biomass was found to be unrelated to plant phylogeny. In line with the greater biomass accumulation in AMF plants, AMF improved the water status, photosynthetic efficiency and uptake of Ca and K in plants irrespective of salinity stress. The uptake of N and P was higher in AMF plants, and as the salinity increased, the trend showed a decline but had a clear upturn as the salinity stress increased to a high level. The activities of malondialdehyde (MDA), peroxidase (POD), and superoxide dismutase (SOD) as well as the proline content changed due to AMF treatment under salinity stress. The accumulation of proline and catalase (CAT) was observed only when plants experienced moderate salinity stress, but peroxidase (POD) and superoxide dismutase (SOD) were significantly increased in AMF plants irrespective of salinity stress. Taken together, arbuscular mycorrhizal fungi influenced plant growth and physiology, and their effects were more notable when their host plants experienced salinity stress and were influenced by plant and fungal traits.


2021 ◽  
Author(s):  
Soibam Helena Devi ◽  
Ingudam Bhupenchandra ◽  
Soibam Sinyorita ◽  
S.K. Chongtham ◽  
E. Lamalakshmi Devi

The 20thcentury witnessed an augmentation in agricultural production, mainly through the progress and use of pesticides, fertilizers containing nitrogen and phosphorus, and developments in plant breeding and genetic skills. In the naturally existing ecology, rhizospheric soils have innumerable biological living beings to favor the plant development, nutrient assimilation, stress tolerance, disease deterrence, carbon seizing and others. These organisms include mycorrhizal fungi, bacteria, actinomycetes, etc. which solubilize nutrients and assist the plants in up taking by roots. Amongst them, arbuscular mycorrhizal (AM) fungi have key importance in natural ecosystem, but high rate of chemical fertilizer in agricultural fields is diminishing its importance. The majority of the terrestrial plants form association with Vesicular Arbuscular Mycorrhiza (VAM) or Arbuscular Mycorrhizal fungi (AMF). This symbiosis confers benefits directly to the host plant’s growth and development through the acquisition of Phosphorus (P) and other mineral nutrients from the soil by the AMF. They may also enhance the protection of plants against pathogens and increases the plant diversity. This is achieved by the growth of AMF mycelium within the host root (intra radical) and out into the soil (extra radical) beyond. Proper management of Arbuscular Mycorrhizal fungi has the potential to improve the profitability and sustainability of agricultural systems. AM fungi are especially important for sustainable farming systems because AM fungi are efficient when nutrient availability is low and when nutrients are bound to organic matter and soil particles.


Sign in / Sign up

Export Citation Format

Share Document