Three-dimensional finite element analysis of mandibular overdentures with different implant positions and attachment types
OBJECTIVE: This 3-D FEA study compared the stress distribution in two-implant mandibular overdentures as a function of implant position and attachment system (LA: locator attachment vs. BA: ball attachment).METHODS: Four models of mandibular overdentures were tested: M1-LA – with implants at the canine regions (standard implant position) and LA; M2-LA – with implants placed at the first premolar regions (distalized implant position) and LA; M1-BA – with standard implant position and BA; and M2-BA – with distalized implant position and BA. The geometric models were converted into finite element models. A 100 N axial load was applied at the first molar region. The von-Mises stress distribution was compared in selected points.RESULTS: The models with BA had pattern of stress distribution was more uniform along the implant axis than the ones with LA, although the stress magnitude was larger. The largest area of von Mises stresses on the alveolar ridge was in the models with standard implant distribution.CONCLUSION: The findings showed that the models with BA had better biomechanical behavior than the ones with LA. For both types of attachment, the models with increased inter-implant distance presented a smaller area of stress distribution in the perimplant cortical bone tissue than the standard implant position.