scholarly journals On stability with respect to the part of variables of a non-autonomous system in a cylindrical phase space

Author(s):  
Jamshid I. Buranov ◽  
Jumanazar Kh. Khusanov

Abstract. The stability problem of a system of differential equations with a right-hand side periodic with respect to the phase (angular) coordinates is considered. It is convenient to consider such systems in a cylindrical phase space which allows a more complete qualitative analysis of their solutions. The authors propose to investigate the dynamic properties of solutions of a non-autonomous system with angular coordinates by constructing its topological dynamics in such a space. The corresponding quasi-invariance property of the positive limit set of the system’s bounded solution is derived. The stability problem with respect to part of the variables is investigated basing of the vector Lyapunov function with the comparison principle and also basing on the constructed topological dynamics. Theorem like a quasi-invariance principle is proved on the basis of a vector Lyapunov function for the class of systems under consideration. Two theorems on the asymptotic stability of the zero solution with respect to part of the variables (to be more precise, non-angular coordinates) are proved. The novelty of these theorems lies in the requirement only for the stability of the comparison system, in contrast to the classical results with the condition of the corresponding asymptotic stability property. The results obtained in this paper make it possible to expand the usage of the direct Lyapunov method in solving a number of applied problems.

2001 ◽  
Vol 11 (03) ◽  
pp. 755-779 ◽  
Author(s):  
RYOICHI WADA ◽  
KAZUTOSHI GOHARA

Fractals and closures of two-dimensional linear dynamical systems excited by temporal inputs are investigated. The continuous dynamics defined by the set of vector fields in the cylindrical phase space is reduced to the discrete dynamics defined by the set of iterated functions on the Poincaré section. When all iterated functions are contractions, it has already been shown theoretically that a trajectory in the cylindrical phase space converges into an attractive invariant set with a fractal-like structure. Calculating analytically the Lipschitz constants of iterated functions, we show that, under some conditions, noncontractions often appear. However, we numerically show that, even for noncontractions, an attractive invariant set with a fractal-like structure exists. By introducing the interpolating system, we can also show that the set of trajectories in the cylindrical phase space is enclosed by the tube structure whose initial set is the closure of the fractal set on the Poincaré section.


1989 ◽  
Vol 56 (2) ◽  
pp. 375-381 ◽  
Author(s):  
Andrzej Tylikowski

The dynamic stability problem is solved for rectangular plates that are laminated antisymmetrically about their middle plane and compressed by time-dependent deterministic or stochastic membrane forces. Moderately large deflection equations taking into account a coupling of in-plane and transverse motions are used. The asymptotic stability and almost-sure asymptotic stability criteria involving a damping coefficient and loading parameters are derived using Liapunov’s direct method. A relation between the stability of nonlinear equations and linearized ones is analyzed. An influence on the number of orthotropic layers, material properties for different classes of parametric excitation on stability domains is shown.


2020 ◽  
Vol 248 (4) ◽  
pp. 457-466
Author(s):  
S. S. Mamonov ◽  
A. O. Kharlamova

Sign in / Sign up

Export Citation Format

Share Document