Gallic acid improves the viability and mitochondrial membrane potential of post-thawed goat buck semen

2021 ◽  
Vol 69 (3) ◽  
pp. 291-297
Author(s):  
Muhammed Enes İnanç ◽  
Şükrü Güngör ◽  
Emir Gül ◽  
Barış Atalay Uslu ◽  
Ayhan Ata

Abstract The aim of this study was to determine the effects of gallic acid (GA) on frozen-thawed goat spermatozoa. Four Honamli goat bucks were used at their breeding season, and ejaculates were collected by an electroejaculator. Mixed semen was divided into the following four groups: control (0 mM), low (L; 1 mM), medium (M; 2 mM), and high (H; 4 mM) concentration of GA. All the groups were frozen and thawed in a water bath for spermatological evaluation. The lowest motility was observed in the control group (47.60 ± 5.70%) (P < 0.05), while the highest viability (62.45 ± 1.68%), plasma membrane and acrosome integrity (44.81 ± 4.57%), and high mitochondrial membrane potential (35.96 ± 2.50%) were observed in the low GA group (P < 0.05). Also, the lowest hypo-osmotic swelling test (HOS +) value was found in the high GA group (47.60 ± 4.82%) (P < 0.05). In conclusion, supplementing a low concentration (1 mM) of GA to the Tris-based semen extender had a positive effect on spermatological parameters after freeze-thawing of Honamli goat semen. Further studies should be continued in other species with different doses and combinations using commercial and/or homemade semen extenders.

Zygote ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 59-64
Author(s):  
Yuhan Zhao ◽  
Yongnan Xu ◽  
Yinghua Li ◽  
Qingguo Jin ◽  
Jingyu Sun ◽  
...  

SummaryKaempferol (KAE) is one of the most common dietary flavonols possessing biological activities such as anticancer, anti-inflammatory and antioxidant effects. Although previous studies have reported the biological activity of KAE on a variety of cells, it is not clear whether KAE plays a similar role in oocyte and embryo in vitro culture systems. This study investigated the effect of KAE addition to in vitro maturation on the antioxidant capacity of embryos in porcine oocytes after parthenogenetic activation. The effects of kaempferol on oocyte quality in porcine oocytes were studied based on the expression of related genes, reactive oxygen species, glutathione and mitochondrial membrane potential as criteria. The rate of blastocyst formation was significantly higher in oocytes treated with 0.1 µm KAE than in control oocytes. The mRNA level of the apoptosis-related gene Caspase-3 was significantly lower in the blastocysts derived from KAE-treated oocytes than in the control group and the mRNA expression of the embryo development-related genes COX2 and SOX2 was significantly increased in the KAE-treated group compared with that in the control group. Furthermore, the level of intracellular reactive oxygen species was significantly decreased and that of glutathione was significantly increased after KAE treatment. Mitochondrial membrane potential (ΔΨm) was increased and the activity of Caspase-3 was significantly decreased in the KAE-treated group compared with that in the control group. Taken together, these results suggested that KAE is beneficial for the improvement of embryo development by inhibiting oxidative stress in porcine oocytes.


2019 ◽  
Author(s):  
Yuping Wang ◽  
Jing Wang ◽  
Xi Zhang ◽  
Yifan Feng ◽  
Yuanzhi Yuan

Abstract Purposes To investigated the neuroprotective effect of Idebenone against H2O2-induced oxidative damage in RGC-5 cells. Methods RGC-5 cells were treated with different concentrations (5, 10, 20μM) of idebenone for 12h prior to addition of 300µM H2O2 for 12 h. The apoptosis of RGC-5 cells were detected by flow cytometry. The changes of mitochondrial membrane potential were detected by JC-1 staining. The autophagy in RGC-5 cells was observed by transmission electron microscopy, and the expression level of autophagy-related protein light chain3, Beclin-1 and mitochondrial membrane potential-related protein Cyt-c in RGC-5 cells were measured by Western blot analysis. Results Flow cytometry showed that the apoptosis rates in control group, H2O2 group and H2O2-treatment with Idebenone pretreatment groups were (6.48±0.55)%, (27.34±0.51)%, (22.88±0.52)%, (15.45±0.81)%, (12.59±0.58)%, respectively(F = 559.7, P <0.0001). After incubation with H2O2, the number of autophagosomes increased significantly, while which was decreased in H2O2-treatment with Idebenone pretreatment groups. After incubation of RGC-5 cells with H2O2, the mitochondrial membrane potential was significantly decreased, while idebenone could prevent the decrease of MMP. Contrast with control group, LC3 II /I, the expression levels of Beclin-1 and Cyt-c in H2O2 group increased significantly(P<0.05); while contrast with H2O2 group, LC3 II/I, the expression of Beclin-1 and Cyt-c in H2O2-treatment with Idebenone pretreatment groups was significantly decreased(P<0.05). Conclusion Idebenone may have protective effects on RGC-5 cells suffering from oxidative damage induced by H2O2 through improving antioxidant capacity, reducing mitochondrial membrane potential decline and the activity of autophagy.


2021 ◽  
Vol 20 (1) ◽  
pp. 136-144
Author(s):  
Benjamaporn Supawat ◽  
Jongchai Tinlapat ◽  
Rusleena Wongmahamad ◽  
Chuleekorn Silpmuang ◽  
Suchart Kothan ◽  
...  

Background: Low-dose X-rays are commonly used in medical imaging to help in the diagnosis ofdiseases. However, the deleterious effects of exposure to medical diagnostic low-dose X-rays remaina highly debated topic. The objective was to study the effects of medical diagnostic X-rays on humanblood cells. Materials and Methods: We studied the effects of medical diagnostic low-dose X-rays (80kVp), i.e.,0.01 or 0.05 mGy, after the in vitro exposure of human red blood cells (RBCs) and peripheralblood mononucleated cells (PBMCs).Cells with no irradiation served as the control group. The biologicalendpoints that were used to determine the effects of medical diagnostic low-dose X-rays were hemolysisfor RBCs and mitochondrial membrane potential, lysosomes, and the cell cycle for PBMCs. Results: Ourresults showed no changes in the hemolysis of RBCs and mitochondrial membrane potential, lysosome, orcell cycle in cells exposed to these low doses of X-rays when compared to the corresponding nonirradiatedcells at all harvest timepoints. Conclusion: These results suggested that there were no deleterious effectsof diagnostic low-dose X-rays when human RBCs and PBMCs were exposed in vitro. Bangladesh Journal of Medical Science Vol.20(1) 2021 p.136-144


2021 ◽  
Author(s):  
Chunyan Liu ◽  
Shilong Zhang ◽  
Dechao Zhu ◽  
Dengying Fan ◽  
Yahui Zhu ◽  
...  

Abstract Background: To examine the morphology and function of mitochondria from the genioglossus in a rabbit model of obstructive sleep apnea-hypopnea syndrome (OSAHS), as well as these factors after insertion of a mandibular advancement device (MAD). Methods: Thirty male New Zealand white rabbits were randomized into three groups: control, OSAHS and MAD, with 10 rabbits in each group. Animals in Group OSAHS and Group MAD were induced to develop OSAHS by injection of gel into the submucosal muscular layer of the soft palate. The rabbits in Group MAD were fitted with a MAD. The animals in the control group were not treated. Further, polysomnography (PSG) and CBCT scan were used to measure MAD effectiveness. CBCT of the upper airway and PSG suggested that MAD was effective. Rabbits in the three groups were induced to sleep for 4–6 hours per day for 8 consecutive weeks. The genioglossus was harvested and detected by optical microscopy and transmission electron microscopy. The mitochondrial membrane potential was determined by laser confocal microscopy and flow cytometry. Mitochondrial complex I and IV activities were detected by mitochondrial complex assay kits.Results: OSAHS-like symptoms were induced successfully in Group OSAHS and rescued by MAD treatment. The relative values of the mitochondrial membrane potential, mitochondrial complex I activity and complex IV activity were significantly lower in Group OSAHS than in the control group; however, there was no significant difference between Group MAD and the control group. The OSAHS-induced injury and the dysfunctional mitochondria of the genioglossus muscle were reduced by MAD treatment.Conclusion: Damaged mitochondrial structure and function were induced by OSAHS and could be attenuated by MAD treatment.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3309
Author(s):  
Michal Ďuračka ◽  
Kamila Husarčíková ◽  
Mikuláš Jančov ◽  
Lucia Galovičová ◽  
Miroslava Kačániová ◽  
...  

Bacterial contamination of bovine ejaculates intended for artificial insemination may be reflected in a significant economic loss due to unsuccessful fertilization as well as health issues of the recipients. The Staphylococcus genus represents a large part of bacteriocenosis of bovine ejaculates. Therefore, this study aims to get a closer look on the effects of Staphylococcus-induced bacteriospermia under in vitro conditions on bovine sperm quality. Prior to inducing bacteriospermia, spermatozoa were separated from each ejaculate using Percoll® Plus gradient medium in order to limit the effects only to the selected bacterial species. Seven Staphylococcus species previously isolated from bovine semen were used for our experiments at a turbidity of 0.5 McFarland (equivalent to 1.5 × 108 colony-forming units per mL). The contaminated semen samples were incubated at 37 °C and at times of 0, 2, and 4 h, motility, mitochondrial membrane potential, reactive oxygen species (ROS) generation, sperm DNA fragmentation, and magnesium (Mg) and calcium (Ca) extracellular concentration were analyzed and compared with the control group (uncontaminated). The results showed no significant changes at the initial measurement. However, significant adverse effects were observed after 2 h and 4 h of incubation. Most notably, the presence of S. aureus, S. warneri, S. kloosii, and S. cohnii caused a significantly increased ROS production, leading to sperm DNA fragmentation, changes in the mitochondrial membrane potential, and a decreased sperm motility. Furthermore, the presence of Staphylococcus species led to lower extracellular concentrations of Mg and Ca. In conclusion, the overgrowth of Staphylococcus bacteria in bovine semen may contribute to oxidative stress resulting in sperm DNA fragmentation, altered mitochondrial membrane potential, and diminished sperm motility.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3250-3250
Author(s):  
Mo Yang ◽  
Weiqing Su ◽  
Liuming Yang ◽  
Huimin Kong ◽  
Huiling Wei ◽  
...  

Abstract Background: Angelica Polysaccharide (APS) is from the root of Radix Angelicae Sinensis (Danggui). Danggui has been used for centuries to treat blood-deficiency related diseases. The hematopoietic effect of Danggui may be related to its constituent, polysaccharide. The effects of angelica polysaccharide on cryopreservation of platelets and megakaryocytes have not been well studied. This study focused on anti-apoptotic effect of APS and TPO on cryopreservation of platelets and megakaryocytes and provided new methods for prolonging the preservation time of platelets in vitro. Methods: The expression of platelet membrane glycoprotein CD41 and CD61, as well as the platelet apoptotic rate, Caspase 3 expression and mitochondrial membrane potential (MMP) were detected by flow cytometry; the anti-apoptotic mechanism of APS by PI3K /AKT signaling pathway was analyzed by Western blot assay. CFU assays were used to determine the effects of APS on megakaryocytic progenitor cells. Analyses of Annexin V, Caspase-3, and Mitochondrial Membrane Potential were conducted in megakaryocytic cell line M-07e. The effects of APS on cells treated with Ly294002, PI3K inhibitor and the effect of APS on the p-AKT were also studied. Results: The platelets were divided into 4 group: control group (4 ℃ stored platelets), APS group (APS-treated platelets stored at 4 ℃), LY294002 group (LY294002-treated platelets stored at 4 ℃) and LY294002+APS group (LY294002+APS treated platelets stored at 4 ℃). The apoptotic rate of platelets in LY294002 group was obviously increased. Compared with control group, the expression of CD41 and CD61 gradually decreased along with the enhancement of LY294002 concentrations (r=-0.953). The apoptotic rate of platelets in LY294002 group was enhanced significantly (P&lt;0.05). While in LY294002+APS group, the apoptotic rate of platelets was significantly reduced (P&lt;0.05) as compare with LY294002 group, which suggest that APS has an anti-apoptotic effect on the cryopreserved platelets. APS decreased the expression of Caspase-3 and inhibited the reduction of mitochondrial membrane potential induced by LY294002. Moreover, APS increased the activation of PI3K /AKT pathway in Platelets . We further analyzed the in vitro effect of APS on CFU-MK formation. APS (50 ug/ml) enhanced TPO (50 ng/ml) -induced CFU-MK formation (p=0.06, n=4). APS also significantly enhanced PDGF, bFGF and VEGF-induced CFU-MK formation (n=4). Moreover, the anti-apoptotic effect of APS in M-07e cells was also demonstrated by Annexin-V, Caspase-3, and JC-1 assays. Adding LY294002 alone increased the percentage of cells undergoing apoptosis. However, additional of APS to LY294002-treated cells reversed the percentage of cells undergoing apoptosis. Furthermore, addition of APS significantly increased the p-AKT. Conclusion: APS, like TPO, has an anti-apoptotic effect on the cryopreserved platelets and megakaryocytes through activating PI3K/AKT, decreasing the expression of Caspase-3 and inhibiting the reduction of MMP. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 937 (2) ◽  
pp. 022070
Author(s):  
E Kladchenko ◽  
A Andreyeva ◽  
V Rychkova

Abstract Impact of salinity stress on the ark clam (Anadara kagoshimensis (Tokunaga, 1906)) hemocyte functions were investigated using flow cytometry and light scattering technique. In control group water salinity was 18 ppm and experimental groups were carried at 14 ppm, 8 ppm, 35 ppm and 45 ppm. Hemolymph osmolarity decreased at hypoosmotic conditions and increased after hyperosmotic treatment. Osmotic stress induced changes in osmotic fragility of the ark clam hemocytes. Salinity 14 ppm did not affect the functional parameters of hemocytes. Incubation of ark clams at salinity and 35 ppm did not influence on the mitochondrial membrane potential of hemocytes but led to a decrease in hemocyte reactive oxygen species (ROS) production by 30 % compared to control. An increase in water salinity to 45 ppm and its decrease to 8 ppm induced substantial changes in the ROS production and mitochondrial membrane potential of hemocytes. Hyposalinity (8 ppm) led to an increase in ROS production by hemocytes (up to 2.4 times) and mitochondrial membrane potential (up to 1.3 times). An increase of salinity level from 18 ppm to 45 ppm decreased the total ability of hemocytes to produce ROS by 11% and increased mitochondrial potential of hemocytes by 150%.


Author(s):  
Amit Kumar ◽  
Sujata Pandita ◽  
N. Anand Laxmi ◽  
Mukesh Bhakat ◽  
T. K. Mohanty

Prostasomes are extracellular vesicles that fuse with sperms thereby improving its functional parameters. Present study aimed to isolate and characterise prostasomes from semen of KF bulls, and to investigate prostasomes effects on functional parameters of KF bull spermatozoa. Isolated prostasomes were characterized with respect to the binding of FITC-conjugated CD 26 antibodies, as well as protein, cholesterol and phospholipids content. Subsequently, effects of prostasomes supplementation (1mg/ml) were investigated on ROS production, Ca2+ signalling, mitochondrial membrane potential and acrosome integrity of fresh and cryopreserved-thawed spermatozoa. Isolated prostasomes were immunostained positively. Prostasomes showed higher proportion of both protein and cholesterol as compared to phospholipids. When sperm samples were supplemented with prostasomes, ROS production decreased, while all other functional parameters improved.


Sign in / Sign up

Export Citation Format

Share Document