Influence of Strontium Concentration on the Microstructure and Electrical Properties of Sol-Gel Derived Barium Strontium Titanate Thin Films

1996 ◽  
Vol 433 ◽  
Author(s):  
M.C. Gust ◽  
L.A. Momoda ◽  
M.L. Mecartney

AbstractBaxSrl−xTiO3 thin films with varying Sr concentration were prepared on Pt coated Si substrates using methoxypropoxide based alkoxide precursors. Films were crystallized by heat treating at 700°C for 30 minutes in an oxygen atmosphere after deposition of each layer. Film thickness ranged from 230 to 260 nm. No evidence of tetragonality was observed in any of the compositions. Films with higher Sr concentrations had a larger average grain size, larger grain size distribution, and increased (111) orientation on (111) oriented Pt. The highest dielectric constant of ˜400 was found for Ba 0.5Sr0.5TiO3, although no direct correlation could be made between the composition and dielectric properties.

2006 ◽  
Vol 514-516 ◽  
pp. 245-249 ◽  
Author(s):  
Olena Okhay ◽  
Vitor M.X. Bergano ◽  
Ai Ying Wu ◽  
Paula M. Vilarinho

Crystalline (Sr1-1.5xBix)TiO3 (SBiT) thin films (0.002 ≤ x ≤ 0.5) were prepared by sol-gel on Pt/TiO2/SiO2/Si substrates. Cubic monophasic SBiT films were obtained for samples with x ≤ 0.167. For films with x ≥ 0.267 a second phase identified as Bi4Ti3O12 was observed. The lattice parameter of SBiT films increases with increasing Bi content, similar to the variation observed in SBiT ceramics. No obviously variation of the grain size with the Bi content was observed. The dielectric constant ε´ at room temperature increases with increasing of Bi concentrations up to x ≤ 0.1. The loss tangent of Bi doped SrTiO3 films is approximately 0.05 and lower than undoped ST films at 10kHz. The higher values of ε´ of Bi doped ST films with x=0.1 and x=0.167 in comparison with undoped films may suppose the appearance of a dielectric anomaly at low temperatures, which will be dependent on the Bi content.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Weiguang Zhang ◽  
Jijun Li ◽  
Yongming Xing ◽  
Xiaomeng Nie ◽  
Fengchao Lang ◽  
...  

SiO2 thin films are widely used in micro-electro-mechanical systems, integrated circuits and optical thin film devices. Tremendous efforts have been devoted to studying the preparation technology and optical properties of SiO2 thin films, but little attention has been paid to their mechanical properties. Herein, the surface morphology of the 500-nm-thick, 1000-nm-thick and 2000-nm-thick SiO2 thin films on the Si substrates was observed by atomic force microscopy. The hardnesses of the three SiO2 thin films with different thicknesses were investigated by nanoindentation technique, and the dependence of the hardness of the SiO2 thin film with its thickness was analyzed. The results showed that the average grain size of SiO2 thin film increased with increasing film thickness. For the three SiO2 thin films with different thicknesses, the same relative penetration depth range of ~0.4–0.5 existed, above which the intrinsic hardness without substrate influence can be determined. The average intrinsic hardness of the SiO2 thin film decreased with the increasing film thickness and average grain size, which showed the similar trend with the Hall-Petch type relationship.


2007 ◽  
Vol 336-338 ◽  
pp. 505-508
Author(s):  
Cheol Jin Kim ◽  
In Sup Ahn ◽  
Kwon Koo Cho ◽  
Sung Gap Lee ◽  
Jun Ki Chung

LiNiO2 thin films for the application of cathode of the rechargeable battery were fabricated by Li ion diffusion on the surface oxidized NiO layer. Bi-axially textured Ni-tapes with 50 ~ 80 μm thickness were fabricated using cold rolling and annealing of Ni-rod prepared by cold isostatic pressing of Ni powder. Surface oxidation of Ni-tapes were conducted using tube furnace or line-focused infrared heater at 700 °C for 150 sec in flowing oxygen atmosphere, resulted in NiO layer with thickness of 400 and 800 μm, respectively. After Li was deposited on the NiO layer by thermal evaporation, LiNiO2 was formed by Li diffusion through the NiO layer during subsequent heat treatment using IR heater with various heat treatment conditions. IR-heating resulted in the smoother surface and finer grain size of NiO and LiNiO2 layer compared to the tube-furnace heating. The average grain size of LiNiO2 layer was 0.5~1 μm, which is much smaller than that of sol-gel processed LiNiO2. The reacted LiNiO2 region showed homogeneous composition throughout the thickness and did not show any noticeable defects frequently found in the solid state reacted LiNiO2, but crack and delamination between the reacted LiNiO2 and Ni occurred as the reaction time increased above 4hrs.


2019 ◽  
Vol 16 (1) ◽  
pp. 65
Author(s):  
Rahmi Dewi ◽  
Tiara Pertiwi ◽  
Krisman Krisman

The thin film of Barium Strontium Titanate (BST) has been studied withcomposition ofby using sol-gel method that annealed in temperature of 600oC and 650oC. The thin film of BST is characterized by using Field Emission Scanning Electron Microscopy (FESEM) and an impedance spectroscopy. The results of  FESEM characterization for samples in temperature of 600oC and 650oC are 55.83 nm and 84.88 nm in thickness respectively. The result of impedance spectroscopy characterization given frequency values obtained by the impedance value of real and imaginary.The capacitance value at a frequency of 20 Hz from a thin film of BST in temperature of 600oC and 650oC are 69.36Fand138.70F. The dielectric constant of the thin film of BST in temperature of 600oC and 650oC are 22.17 dan 131.56 respectively.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1600 ◽  
Author(s):  
Alexander Tkach ◽  
André Santos ◽  
Sebastian Zlotnik ◽  
Ricardo Serrazina ◽  
Olena Okhay ◽  
...  

If piezoelectric micro-devices based on K0.5Na0.5NbO3 (KNN) thin films are to achieve commercialization, it is critical to optimize the films’ performance using low-cost scalable processing conditions. Here, sol–gel derived KNN thin films are deposited using 0.2 and 0.4 M precursor solutions with 5% solely potassium excess and 20% alkali (both potassium and sodium) excess on platinized sapphire substrates with reduced thermal expansion mismatch in relation to KNN. Being then rapid thermal annealed at 750 °C for 5 min, the films revealed an identical thickness of ~340 nm but different properties. An average grain size of ~100 nm and nearly stoichiometric KNN films are obtained when using 5% potassium excess solution, while 20% alkali excess solutions give the grain size of 500–600 nm and (Na + K)/Nb ratio of 1.07–1.08 in the prepared films. Moreover, the 5% potassium excess solution films have a perovskite structure without clear preferential orientation, whereas a (100) texture appears for 20% alkali excess solutions, being particularly strong for the 0.4 M solution concentration. As a result of the grain size and (100) texturing competition, the highest room-temperature dielectric permittivity and lowest dissipation factor measured in the parallel-plate-capacitor geometry were obtained for KNN films using 0.2 M precursor solutions with 20% alkali excess. These films were also shown to possess more quadratic-like and less coercive local piezoelectric loops, compared to those from 5% potassium excess solution. Furthermore, KNN films with large (100)-textured grains prepared from 0.4 M precursor solution with 20% alkali excess were found to possess superior local piezoresponse attributed to multiscale domain microstructures.


1994 ◽  
Vol 346 ◽  
Author(s):  
M.C. Gust ◽  
L.A. Momoda ◽  
M.L. Mecartney

ABSTRACTThin films of BaTiO3 were prepared by the sol-gel route using barium titanium methoxypropoxide in methoxypropanol. Sols with water of hydrolysis varying between h=0 and h=2 were spun onto (100) Si and Ge coated (100) Si substrates. XRD and analytical TEM were used to study the microstructure and crystallization behavior of these films. Polycrystalline BaTiO3 was obtained by heat treating the films at temperatures between 600 and 750°C using either conventional furnace annealing or rapid thermal annealing. Films prepared from sols having the highest water content tended to crystallize first. The BaTiO3 thin films exhibited a fine grain size on the order of 25–50 nm. No preferred orientation was observed. The effects of the hydrolysis conditions of the sol, the type of heat treatment, and the choice of substrate on the final microstructure of the films are discussed.


Sign in / Sign up

Export Citation Format

Share Document