High field 1H NMR Studies of Sol-Gel Kinetics

1986 ◽  
Vol 73 ◽  
Author(s):  
Bruce D. Kay ◽  
Roger A. Assink

ABSTRACTHigh resolution 1H NMR spectroscopy at high magnetic fields is employed to study the reaction kinetics of the Si(OCH3)4:CH3OH:H2O sol-gel system. Both the overall extent of reaction as a function of time and the equilibrium distribution of species are measured. In acid catalyzed solution, condensation is the rate limiting step while in base catalyzed solution, hydrolysis becomes rate limiting. A kinetic model in which the rate of hydrolysis is assumed to be independent of the adjacent functional groups is presented. This model correctly predicts the distribution of product species during the initial stages of the sol-gel reaction.

1979 ◽  
Vol 44 (3) ◽  
pp. 912-917 ◽  
Author(s):  
Vladimír Macháček ◽  
Said A. El-bahai ◽  
Vojeslav Štěrba

Kinetics of formation of 2-imino-4-thiazolidone from S-ethoxycarbonylmethylisothiouronium chloride has been studied in aqueous buffers and dilute hydrochloric acid. The reaction is subject to general base catalysis, the β value being 0.65. Its rate limiting step consists in acid-catalyzed splitting off of ethoxide ion from dipolar tetrahedral intermediate. At pH < 2 formation of this intermediate becomes rate-limiting; rate constant of its formation is 2 . 104 s-1.


1999 ◽  
Vol 64 (10) ◽  
pp. 1654-1672 ◽  
Author(s):  
Miroslav Ludwig ◽  
Iva Bednářová ◽  
Patrik Pařík

Four N-(phenylazo)-substituted saturated nitrogen heterocyclics were synthesized and their structure was confirmed by 1H and 13C NMR spectroscopy. The kinetics of their acid-catalyzed decomposition were studied at various concentrations of the catalyst (pivalic acid) in 40, 30, and 20% (v/v) aqueous ethanol at 25 °C. The values obtained for the observed rate constants were processed by the non-linear regression method according to the suggested kinetic models and by the method of principal component analysis (PCA). The interpretation of the results has shown that the acid-catalyzed decomposition of the heterocyclics under the conditions used proceeds by the mechanism of general acid catalysis, the proton being the dominant catalyst particle of the rate-limiting step. The decrease in the observed rate constant at higher concentrations of the catalyst was explained by the formation of a non-reactive complex composed of the undissociated acid and the respective N-(phenylazo)heterocycle. The effect of medium and steric effect of the heterocyclic moiety on the values of catalytic rate constant are discussed.


1984 ◽  
Vol 32 ◽  
Author(s):  
Roger A. Assink ◽  
Bruce D. Kay

ABSTRACTHigh resolution 1H NMR spectroscopy has been employed to study the dynamics of the sol-gel transition in simple silicates. High magnetic fields (360 MHz) were used to detect and identify the various chemical species present in the Si(OCH2CH3)4:C2H5OH:H2O sol-gel system. Using these techniques, the time evolution of the reactant and product species were monitored. The results of these studies have shown that acid and base catalyzed systems react along very different chemical pathways and that the elementary hydrolysis and condensation reactions occur on widely different time scales.


1991 ◽  
Vol 69 (9) ◽  
pp. 1445-1449 ◽  
Author(s):  
Saber M. Sharaf ◽  
Samir K. El-Sadany ◽  
Ezzat A. Hamed ◽  
Abdel-Hamid A. Youssef

The reactions of a series of methyl para-substituted phenylpropiolates 1a–e with piperidine, morpholine, and diethylamine in methanol and dimethylformamide (DMF) have been studied and their rates measured. The products were methyl β-(N,N-dialkylamino)-p-substituted cinnamates 2–4a–e. 1H NMR spectra were used to determine the configuration of the products. The ρ values in methanol ranged between 0.34 and 1.24 whereas in DMF they were between 0.85 and 1.88. The values of ΔS≠ favor a bimolecular rate-limiting step mechanism. Key words: nucleophilic addition to acetylenic esters.


1987 ◽  
Vol 52 (5) ◽  
pp. 1285-1297
Author(s):  
Jaromír Kaválek ◽  
Ludmila Hejtmánková ◽  
Vojeslav Štěrba

Kinetics of hydrochloric acid-catalyzed solvolysis of substituted phenyl and methyl N-phenylbenzimidoesters have been studied in methanol, 50 vol. % aqueous methanol, and 50 vol. % aqueous tetrahydrofurane, and the composition of the reaction products has been determined. The rate-limiting step consists in addition of water or methanol to the protonated substrate. The reaction of methyl N-phenylbenzimidoester with both water and methanol and that of substituted phenyl N-phenylbenzimidoesters with methanol produce aniline, the ester (or orthoester) and the corresponding phenol. The reaction of substituted phenyl N-phenylbenzimidoesters with water gives both the neutral tetrahedral intermediate (which is decomposed into phenol and anilide) and the protonated intermediate (which produces aniline and the ester). At the same proton concentration the phenol content increases with increasing value of the σ constant of the substituent.


1996 ◽  
Vol 61 (5) ◽  
pp. 751-763 ◽  
Author(s):  
Oldřich Pytela ◽  
Aleš Halama

Eight derivatives of 1-(2-alkoxycarbonylphenyl)-3-phenyltriazene (R = methyl, ethyl, propyl, isopropyl, butyl, isobutyl, hexyl, and allyl) have been synthesized and their UV-VIS, IR, 1H and 13C NMR spectra measured. The NMR spectra have been interpreted in detail. The kinetics of acid-catalyzed decomposition and base-catalyzed cyclization of the title compounds have been measured in 52.1% w/w methanol at 25.0 °C. The unit reaction order has been verified and the cyclization product has been identified. The pH-profiles obtained have been used to calculate the catalytic rate constants kA (acid-catalyzed decomposition) and kB (base-catalyzed cyclization) of all the derivatives; the constants have been interpreted with regard to inductive and steric effects. The catalytic rate constant kA has been found to be independent of the substituents. The catalytic rate constant kB depends statistically significantly upon both inductive and steric effects, the sensitivity to the former being more significant. The experimental results and their interpretation confirm the base-catalyzed cyclization mechanism with formation of tetrahedral intermediate as the rate-limiting step.


1991 ◽  
Vol 56 (8) ◽  
pp. 1701-1710 ◽  
Author(s):  
Jaromír Kaválek ◽  
Vladimír Macháček ◽  
Miloš Sedlák ◽  
Vojeslav Štěrba

The cyclization kinetics of N-(2-methylcarbonylphenyl)-N’-methylsulfonamide (IIb) into 3-methyl-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (Ib) has been studied in ethanolamine, morpholine, and butylamine buffers and in potassium hydroxide solution. The cyclization is subject to general base and general acid catalysis. The value of the Bronsted coefficient β is about 0.1, which indicates that splitting off of the proton from negatively charged tetrahedral intermediate represents the rate-limiting and thermodynamically favourable step. In the solutions of potassium hydroxide the cyclization of dianion of the starting ester IIb probably becomes the rate-limiting step.


2013 ◽  
Vol 6s1 ◽  
pp. IJTR.S11737 ◽  
Author(s):  
Richard O. Williams

Indoleamine 2,3-dioxygenase (IDO) is the first and rate-limiting step along the kynurenine pathway and is thought to play a key role in immune homeostasis through depletion of tryptophan and accumulation of kynurenines. In this review we summarize recent research into the possibility of harnessing the IDO pathway for the therapy of rheumatoid arthritis. Inhibition of IDO activity, or knockout of the gene encoding IDO, was shown to cause an increase in the severity of collagen-induced arthritis, an animal model of rheumatoid arthritis. The increased severity of disease was associated with elevated numbers of pathogenic Th1 and Th17 cells in the joints and draining lymph nodes. In another study, analysis of the kinetics of expression of downstream kynurenine pathway enzymes during the course of arthritis revealed a potential role for tryptophan metabolites in resolution of arthritis. Furthermore, the therapeutic administration of L-kynurenine or [3,4-dimethoxycinnamonyl]-anthranilic acid (a synthetic derivative of 3-hydroxy-anthranilic acid) significantly reduced both clinical and histological progression of experimental arthritis. These findings raise the possibility of exploiting the IDO pathway for the therapy of autoimmune disease.


Sign in / Sign up

Export Citation Format

Share Document