scholarly journals Toward autonomous additive manufacturing: Bayesian optimization on a 3D printer

MRS Bulletin ◽  
2021 ◽  
Author(s):  
James R. Deneault ◽  
Jorge Chang ◽  
Jay Myung ◽  
Daylond Hooper ◽  
Andrew Armstrong ◽  
...  

Abstract Materials exploration and development for three-dimensional (3D) printing technologies is slow and labor-intensive. Each 3D printing material developed requires unique print parameters be learned for successful part fabrication, and sub-optimal settings often result in defects or fabrication failure. To address this, we developed the Additive Manufacturing Autonomous Research System (AM ARES). As a preliminary test, we tasked AM ARES with autonomously modulating four print parameters to direct-write single-layer print features that matched target specifications. AM ARES employed automated image analysis as closed-loop feedback to an online Bayesian optimizer and learned to print target features in fewer than 100 experiments. In due course, this first-of-its-kind research robot will be tasked with autonomous multi-dimensional optimization of print parameters to accelerate materials discovery and development in the field of AM. The combining of open-source ARES OS software with low-cost hardware makes autonomous AM highly accessible, promoting mainstream adoption and rapid technological advancement. Impact statement The discovery and development of new materials and processes for three-dimensional (3D) printing is hindered by slow and labor-intensive trial-and-error optimization processes. Coupled with a pervasive lack of feedback mechanisms in 3D printers, this has inhibited the advancement and adoption of additive manufacturing (AM) technologies as a mainstream manufacturing approach. To accelerate new materials development and streamline the print optimization process for AM, we have developed a low-cost and accessible research robot that employs online machine learning planners, together with our ARES OS software, which we will release to the community as open-source, to rapidly and effectively optimize the complex, high-dimensional parameter sets associated with 3D printing. In preliminary trials, the first-of-its-kind research robot, the Additive Manufacturing Autonomous Research System (AM ARES), learned to print single-layer material extrusion specimens that closely matched targeted feature specifications in under 100 iterations. Delegating repetitive and high-dimensional cognitive labor to research robots such as AM ARES frees researchers to focus on more creative, insightful, and fundamental scientific work and reduces the cost and time required to develop new AM materials and processes. The teaming of human and robot researchers begets a synergy that will exponentially propel technological progress in AM.

Inventions ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 78 ◽  
Author(s):  
Aubrey Woern ◽  
Joshua Pearce

Although distributed additive manufacturing can provide high returns on investment, the current markup on commercial filament over base polymers limits deployment. These cost barriers can be surmounted by eliminating the entire process of fusing filament by three-dimensional (3-D) printing products directly from polymer granules. Fused granular fabrication (FGF) (or fused particle fabrication (FPF)) is being held back in part by the accessibility of low-cost pelletizers and choppers. An open-source 3-D printable invention disclosed here allows for precisely controlled pelletizing of both single thermopolymers as well as composites for 3-D printing. The system is designed, built, and tested for its ability to provide high-tolerance thermopolymer pellets with a number of sizes capable of being used in an FGF printer. In addition, the chopping pelletizer is tested for its ability to chop multi-materials simultaneously for color mixing and composite fabrication as well as precise fractional measuring back to filament. The US$185 open-source 3-D printable pelletizer chopper system was successfully fabricated and has a 0.5 kg/h throughput with one motor, and 1.0 kg/h throughput with two motors using only 0.24 kWh/kg during the chopping process. Pellets were successfully printed directly via FGF as well as indirectly after being converted into high-tolerance filament in a recyclebot.


Author(s):  
Torstein Yddal ◽  
Sandy Cochran ◽  
Odd Helge Gilja ◽  
Michiel Postema ◽  
Spiros Kotopoulis

AbstractStudying the effects of ultrasound on biological cells requires extensive knowledge of both the physical ultrasound and cellular biology. Translating knowledge between these fields can be complicated and time consuming. With the vast range of ultrasonic equipment available, nearly every research group uses different or unique devices. Hence, recreating the experimental conditions and results may be expensive or difficult. For this reason, we have developed devices to combat the common problems seen in state-of-the-art biomedical ultrasound research. In this paper, we present the design, fabrication, and characterisation of an open-source device that is easy to manufacture, allows for parallel sample sonication, and is highly reproducible, with complete acoustic calibration. This device is designed to act as a template for sample sonication experiments. We demonstrate the fabrication technique for devices designed to sonicate 24-well plates and OptiCell™ using three-dimensional (3D) printing and low-cost consumables. We increased the pressure output by electrical impedance matching of the transducers using transmission line transformers, resulting in an increase by a factor of 3.15. The devices cost approximately €220 in consumables, with a major portion attributed to the 3D printing, and can be fabricated in approximately 8 working hours. Our results show that, if our protocol is followed, the mean acoustic output between devices has a variance of <1%. We openly provide the 3D files and operation software allowing any laboratory to fabricate and use these devices at minimal cost and without substantial prior know-how.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoyu Zhao ◽  
Ye Zhao ◽  
Ming-De Li ◽  
Zhong’an Li ◽  
Haiyan Peng ◽  
...  

AbstractPhotopolymerization-based three-dimensional (3D) printing can enable customized manufacturing that is difficult to achieve through other traditional means. Nevertheless, it remains challenging to achieve efficient 3D printing due to the compromise between print speed and resolution. Herein, we report an efficient 3D printing approach based on the photooxidation of ketocoumarin that functions as the photosensitizer during photopolymerization, which can simultaneously deliver high print speed (5.1 cm h−1) and high print resolution (23 μm) on a common 3D printer. Mechanistically, the initiating radical and deethylated ketocoumarin are both generated upon visible light exposure, with the former giving rise to rapid photopolymerization and high print speed while the latter ensuring high print resolution by confining the light penetration. By comparison, the printed feature is hard to identify when the ketocoumarin encounters photoreduction due to the increased lateral photopolymerization. The proposed approach here provides a viable solution towards efficient additive manufacturing by controlling the photoreaction of photosensitizers during photopolymerization.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3149
Author(s):  
Angelika Zaszczyńska ◽  
Maryla Moczulska-Heljak ◽  
Arkadiusz Gradys ◽  
Paweł Sajkiewicz

Tissue engineering (TE) scaffolds have enormous significance for the possibility of regeneration of complex tissue structures or even whole organs. Three-dimensional (3D) printing techniques allow fabricating TE scaffolds, having an extremely complex structure, in a repeatable and precise manner. Moreover, they enable the easy application of computer-assisted methods to TE scaffold design. The latest additive manufacturing techniques open up opportunities not otherwise available. This study aimed to summarize the state-of-art field of 3D printing techniques in applications for tissue engineering with a focus on the latest advancements. The following topics are discussed: systematics of the available 3D printing techniques applied for TE scaffold fabrication; overview of 3D printable biomaterials and advancements in 3D-printing-assisted tissue engineering.


Author(s):  
Morteza Vatani ◽  
Faez Alkadi ◽  
Jae-Won Choi

A novel additive manufacturing algorithm was developed to increase the consistency of three-dimensional (3D) printed curvilinear or conformal patterns on freeform surfaces. The algorithm dynamically and locally compensates the nozzle location with respect to the pattern geometry, motion direction, and topology of the substrate to minimize lagging or leading during conformal printing. The printing algorithm was implemented in an existing 3D printing system that consists of an extrusion-based dispensing module and an XYZ-stage. A dispensing head is fixed on a Z-axis and moves vertically, while the substrate is installed on an XY-stage and moves in the x–y plane. The printing algorithm approximates the printed pattern using nonuniform rational B-spline (NURBS) curves translated directly from a 3D model. Results showed that the proposed printing algorithm increases the consistency in the width of the printed patterns. It is envisioned that the proposed algorithm can facilitate nonplanar 3D printing using common and commercially available Cartesian-type 3D printing systems.


2019 ◽  
Vol 8 (6) ◽  
pp. 285 ◽  
Author(s):  
Balletti ◽  
Ballarin

In recent decades, 3D acquisition by laser scanning or digital photogrammetry has become one of the standard methods of documenting cultural heritage, because it permits one to analyze the shape, geometry, and location of any artefact without necessarily coming into contact with it. The recording of three-dimensional metrical data of an asset allows one to preserve and monitor, but also to understand and explain the history and cultural heritage shared. In essence, it constitutes a digital archive of the state of an artefact, which can be used for various purposes, be remodeled, or kept safely stored. With the introduction of 3D printing, digital data can once again take on material form and become physical objects from the corresponding mathematical models in a relatively short time and often at low cost. This possibility has led to a different consideration of the concept of virtual data, no longer necessarily linked to simple visual fruition. The importance of creating high-resolution physical copies has been reassessed in light of different types of events that increasingly threaten the protection of cultural heritage. The aim of this research is to analyze the critical issues in the production process of the replicas, focusing on potential problems in data acquisition and processing and on the accuracy of the resulting 3D printing. The metric precision of the printed model with 3D technology are fundamental for everything concerning geomatics and must be related to the same characteristics of the digital model obtained through the survey analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-20 ◽  
Author(s):  
Dhinakaran Veeman ◽  
M. Swapna Sai ◽  
P. Sureshkumar ◽  
T. Jagadeesha ◽  
L. Natrayan ◽  
...  

As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.


Author(s):  
Ghazi Qaryouti ◽  
Abdel Rahman Salbad ◽  
Sohaib A. Tamimi ◽  
Anwar Almofleh ◽  
Wael A. Salah ◽  
...  

The three-dimensional (3D) printing technologies represent a revolution in the manufacturing sector due to their unique characteristics. These printers arecapable to increase the productivitywithlower complexity in addition tothe reduction inmaterial waste as well the overall design cost prior large scalemanufacturing.However, the applications of 3D printing technologies for the manufacture of functional components or devices remain an almost unexplored field due to their high complexity. In this paper the development of 3D printing technologies for the manufacture of functional parts and devices for different applications is presented. The use of 3D printing technologies in these applicationsis widelyused in modelingdevices usually involves expensive materials such as ceramics or compounds. The recent advances in the implementation of 3D printing with the use of environmental friendly materialsin addition to the advantages ofhighperformance and flexibility. The design and implementation of relatively low-cost and efficient 3D printer is presented. The developed prototype was successfully operated with satisfactory operated as shown from the printed samples shown.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2133
Author(s):  
Eva María Rubio ◽  
Ana María Camacho

The Special Issue of the Manufacturing Engineering Society 2019 (SIMES-2019) has been launched as a joint issue of the journals “Materials” and “Applied Sciences”. The 29 contributions published in this Special Issue of Materials present cutting-edge advances in the field of manufacturing engineering focusing on additive manufacturing and 3D printing, advances and innovations in manufacturing processes, sustainable and green manufacturing, manufacturing of new materials, metrology and quality in manufacturing, industry 4.0, design, modeling, and simulation in manufacturing engineering and manufacturing engineering and society. Among them, these contributions highlight that the topic “additive manufacturing and 3D printing” has collected a large number of contributions in this journal because its huge potential has attracted the attention of numerous researchers over the last years.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4534 ◽  
Author(s):  
Elżbieta Bogdan ◽  
Piotr Michorczyk

This paper describes the process of additive manufacturing and a selection of three-dimensional (3D) printing methods which have applications in chemical synthesis, specifically for the production of monolithic catalysts. A review was conducted on reference literature for 3D printing applications in the field of catalysis. It was proven that 3D printing is a promising production method for catalysts.


Sign in / Sign up

Export Citation Format

Share Document