scholarly journals Angelica sinensis polysaccharide promotes the proliferation and osteogenic differentiation of human dental pulp stem cells (hDPSCs) by activating the wnt/β-catenin pathway

2021 ◽  
Vol 13 (4) ◽  
pp. 31-37
Author(s):  
Tiantian Mao ◽  
Youjian Peng ◽  
Ruobing Peng ◽  
Xiaoying Wei

Human dental pulp stem cells (hDPSCs) are capable of forming mineralized nodules. The proliferation and osteogenic differentiation of hDPSCs are very important for alleviating tooth defects caused by related diseases. Angel-ica polysaccharide (ASP) is the main bioactive ingredient extracted from the angelica root. ASP has a variety of biological functions, including immune regulation, antitumor activity, and hematopoiesis. However, its possible effects on hDPSCs are still unclear. In this study, we aimed to investigate the role of ASP in periodontal diseases. We found that ASP promoted the proliferation of hDPSCs and osteogenic differentiation of hDPSCs. We further found that it promoted the expression of osteogenic-related genes, including ALP, RUNX2, Col1a1, and OCN. Mechanically, we found that ASP activated the Wnt/β-catenin pathway. In conclusion, our results suggested that ASP promoted the proliferation and osteogenic differentiation of hDPSCs via the Wnt/β-catenin pathway.

2021 ◽  
Vol 400 (2) ◽  
pp. 112466
Author(s):  
J.F. Huo ◽  
M.L. Zhang ◽  
X.X. Wang ◽  
D.H. Zou

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Wenzhen Lin ◽  
Li Gao ◽  
Wenxin Jiang ◽  
Chenguang Niu ◽  
Keyong Yuan ◽  
...  

Redox Biology ◽  
2017 ◽  
Vol 12 ◽  
pp. 690-698 ◽  
Author(s):  
Cristina Mas-Bargues ◽  
José Viña-Almunia ◽  
Marta Inglés ◽  
Jorge Sanz-Ros ◽  
Juan Gambini ◽  
...  

2019 ◽  
Vol 20 (22) ◽  
pp. 5778
Author(s):  
Yeon Kim ◽  
Joo-Yeon Park ◽  
Hyun-Joo Park ◽  
Mi-Kyoung Kim ◽  
Yong-Il Kim ◽  
...  

Pentraxin-3 (PTX3) is recognized as a modulator of inflammation and a mediator of tissue repair. In this study, we characterized the role of PTX3 on some biological functions of human dental pulp stem cells (HDPSCs). The expression level of PTX3 significantly increased during osteogenic/odontogenic differentiation of HDPSCs, whereas the knockdown of PTX3 decreased this differentiation. Silencing of PTX3 in HDPSCs inhibited their migration and C-X-C chemokine receptor type 4 (CXCR4) expression. Our present study indicates that PTX3 is involved in osteogenic/odontogenic differentiation and migration of HDPSCs, and may contribute to the therapeutic potential of HDPSCs for regeneration and repair.


2015 ◽  
Vol 21 (3-4) ◽  
pp. 729-739 ◽  
Author(s):  
Jonas Jensen ◽  
David Christian Evar Kraft ◽  
Helle Lysdahl ◽  
Casper Bindzus Foldager ◽  
Muwan Chen ◽  
...  

2019 ◽  
Vol 26 (3) ◽  
pp. 1677-1685 ◽  
Author(s):  
Bing-Chang Xin ◽  
Qi-Shan Wu ◽  
Song Jin ◽  
Ai-Hua Luo ◽  
De-Gang Sun ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Liangkun Xie ◽  
Zheng Guan ◽  
Mingzhu Zhang ◽  
Sha Lyu ◽  
Nattawut Thuaksuban ◽  
...  

Human dental pulp stem cells (DPSCs) hold great promise in bone regeneration. However, the exact mechanism of osteogenic differentiation of DPSCs remains unknown, especially the role of exosomes played in. The DPSCs were cultured and received osteogenic induction; then, exosomes from osteogenic-induced DPSCs (OI-DPSC-Ex) at different time intervals were isolated and sequenced for circular RNA (circRNA) expression profiles. Gradually, increased circular lysophosphatidic acid receptor 1 (circLPAR1) expression was found in the OI-DPSC-Ex coincidentally with the degree of osteogenic differentiation. Meanwhile, results from osteogenic differentiation examinations showed that the OI-DPSC-Ex had osteogenic effect on the recipient homotypic DPSCs. To investigate the mechanism of exosomal circLPAR1 on osteogenic differentiation, we verified that circLPAR1 could competently bind to hsa-miR-31, by eliminating the inhibitory effect of hsa-miR-31 on osteogenesis, therefore promoting osteogenic differentiation of the recipient homotypic DPSCs. Our study showed that exosomal circRNA played an important role in osteogenic differentiation of DPSCs and provided a novel way of utilization of exosomes for the treatment of bone deficiencies.


Sign in / Sign up

Export Citation Format

Share Document