Development of active packaging films based on quaternary ammonium chitosan, polyvinyl alcohol and litchi (Litchi chinensis Sonn.) pericarp extract

2021 ◽  
Vol 13 (SP2) ◽  
pp. 9-13
Author(s):  
Juge Liu ◽  
Xiyu Yao ◽  
Daewi Yun ◽  
Man Zhang ◽  
Chunlu Qian ◽  
...  

Litchi (Litchi chinensis Sonn.) pericarp contains abundant polyphenols that are suitable materials for developing active packaging films. In this study, 1 wt%, 3 wt% and 5 wt% of litchi pericarp extract (LPE) was added into qua-ternary ammonium chitosan (QAC) and polyvinyl alcohol (PVA) matrix to develop active packaging films. The structural, physical and functional properties of QAC-PVA (QP) films were compared with LPE (QP-LPE films) and without LPE (QP films). Results showed QP film had a heterogenous cross-section whereas QP-LPE films displayed rough and uneven cross-sections. After adding LPE, the N–H, O–H, C–H and C=O stretching bands of QP films shifted due to the formation of intermolecular interactions between LPE and film matrix. LPE made the colorless QP film turned brown. QP-LPE films presented lower ultraviolet–visible light transmittance than QP film. After adding LPE, film thickness increased from 0.091 to 0.103 mm, film water vapor permeability increased from 14.98 × 10−11 to 17.21 × 10−11 g m−1 s−1 Pa−1, film oxygen permeability increased from 0.16 to 0.22 cm3 mm m−2 day−1 atm−1, film tensile strength increased from 14.10 to 17.41 MPa, and film elongation at break decreased from 36.94% to 25.13%. QP-LPE films quickly released polyphenols in distilled water within 4 h and displayed potent antioxidant activity. The antimicrobial ratio of the film against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes was elevated from 50.40−68.04% to 58.93−91.38% after adding LPE. Results suggested QP-LPE films could be utilized as antioxidant and antimicrobial packaging materials in food industry.

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 327 ◽  
Author(s):  
Shufang Wu ◽  
Xunjun Chen ◽  
Tiehu Li ◽  
Yingde Cui ◽  
Minghao Yi ◽  
...  

In this study, feather keratin/polyvinyl alcohol/tris(hydroxymethyl)aminomethane (FK/PVA/Tris) bionanocomposite films containing graphene oxide (GO) (0.5, 1, 2, and 3 wt%) or graphene (0.5, 1, 2, and 3 wt%) were prepared using a solvent casting method. The scanning electron microscopy results indicated that the dispersion of GO throughout the film matrix was better than that of graphene. The successful formation of new hydrogen bonds between the film matrix and GO was confirmed through the use of Fourier-transform infrared spectroscopy. The tensile strength, elastic modulus, and initial degradation temperature of the films increased, whereas the total soluble mass, water vapor permeability, oxygen permeability, and light transmittance decreased following GO or graphene incorporation. In summary, nanoblending is an effective method to promote the application of FK/PVA/Tris-based blend films in the packaging field.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 298 ◽  
Author(s):  
Shufang Wu ◽  
Xunjun Chen ◽  
Minghao Yi ◽  
Jianfang Ge ◽  
Guoqiang Yin ◽  
...  

In this study, feather keratin/polyvinyl alcohol/tris(hydroxymethyl)aminomethane (FK/PVA/Tris) bionanocomposite films containing two types of nanoparticles, namely one-dimensional sodium montmorillonite (MMT) clay platelets (0.5, 1, 3, and 5 wt%) and three-dimensional TiO2 nanospheres (0.5, 1, 3, and 5 wt%), are prepared using solvent casting method. X-ray diffraction studies confirm the completely exfoliated structure of FK/PVA/Tris/MMT nanocomposites. The successful formation of new hydrogen bonds between the hydroxyl groups of the film matrix and the nanofillers is confirmed by Fourier transform infrared spectroscopy. The tensile strength, elongation at break, and initial degradation temperature of the films are enhanced after MMT and TiO2 incorporation. The water vapor permeability, oxygen permeability, and light transmittance decrease with increase in TiO2 and MMT contents. In summary, nanoblending is an effective method to promote the application of FK/PVA/Tris blend films in the packaging field.


2016 ◽  
Vol 12 (7) ◽  
pp. 647-660 ◽  
Author(s):  
Krisana Nilsuwan ◽  
Soottawat Benjakul ◽  
Thummanoon Prodpran

Abstract Properties of film-forming dispersion (FFD) and emulsion film incorporated with palm oil containing soy lecithin at 50 % and 75 % (w/w, based on palm oil) and emulsified with different microfluidization pressures (6.89, 13.79 and 20.68 MPa) and pass numbers (2 and 4) were investigated. Microfluidized FFD containing 50 % soy lecithin showed the smaller oil droplet size. The lower water vapor permeability with higher tensile strength and elongation at break were found for films from microfluidized FFD (p < 0.05). Films containing 50 % soy lecithin had higher light transmittance and lower b*- and ΔE*-values than those containing 75 % soy lecithin (p < 0.05). Smooth surface and compact cross-section were observed in films from microfluidized FFD. Film from microfluidized FFD containing 50 % soy lecithin showed higher thermal stability. Thus, the emulsion film with improved properties could be prepared from FFD using 50 % soy lecithin with the aid of microfluidization.


2011 ◽  
Vol 233-235 ◽  
pp. 1162-1166 ◽  
Author(s):  
Feng Jun Wang ◽  
Jian Qing Wang ◽  
Mei Xu

Cellulose-based composites packaging films containing various amounts of modified nano-SiO2 were prepared by utilizing hardwood pulps as natural cellulose resource through NMMO-technology to improve the mechanical properties, permeability for oxygen and water vapor etc. The tensile strength, elongation at break, thermal stability and permeability of the cellulose composites films as a function of the content of modified nano-SiO2 were studied. The investigation suggested that the capabilities of composites films with 2 wt.% modified nano-SiO2 added were improved largely, compared to pure cellulose films, when the diameter of particles is 30nm. The tensile strength was increased from 8.95 to 17.37 MPa and the elongation at break of the cellulose composites films was improved from 41.11% to 58.34%. The composites films with rational mechanical properties have adjustable oxygen permeability (7.90×10-15-72.18×10-15 cm3·cm/cm2·s·Pa) and water vapor permeability (7.12×10-13-5.32×10-13g·cm/cm2·s·Pa). And thermal stability of the composites films was advanced through adding modified nano-SiO2.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jinshu Liu ◽  
Xiaoyan Ma ◽  
Wenzhao Shi ◽  
Jianwei Xing ◽  
Chaoqun Ma ◽  
...  

Abstract Baicalin, an active flavonoid ingredient of Scutellaria baicalensis Georgi, was extracted by heat reflux extraction and showed the same significance UV absorption property with standard baicalin. Active films were prepared from polyvinyl alcohol (PVA) containing baicalin extract by casting method. The effect of baicalin extracts on the UV-blocking, optical, antioxidant property, water vapor permeability, swelling and mechanical properties of the films were studied. UV–vis transmittance spectra showed that PVA films incorporated with baicalin extract blocked ultraviolet light range from 280–400 nm even with low concentration of baicalin (0.5 wt%) and maintain the high transparency in visible spectrum. The outstanding UV-blocking properties of PVA films incorporated with baicalin extract were also confirmed by Rhodamine B degradation. Baicalin conferred antioxidant properties to PVA films as determined by DPPH radical scavenging activity. Due to the interaction between hydroxy groups of baicalin and PVA molecule, water vapor permeability, swelling and elongation at break of the films were decreased accompanied with the increasing in tensile strength and Young’s modulus. FTIR reveal that the interaction between PVA molecules was significant changed by the introduction of baicalin. These results suggest that PVA film incorporated with baicalin extract can be used for the development of functional protective film.


2000 ◽  
Vol 9 (1) ◽  
pp. 23-35 ◽  
Author(s):  
P. TANADA-PALMU ◽  
H. HELÉN ◽  
L. HYVÖNEN

Edible films from wheat gluten were prepared with various amounts of glycerol as a plasticizer. Water vapor permeability, oxygen permeability, tensile strength and percentage elongation at break at different water activities ( aw ) were measured. Films with low amounts of glycerol had lower water vapor and oxygen permeabilities, higher tensile strength and lower elongation at break. Wheat gluten coatings reduced weight loss during two weeks of storage for cherry tomatoes and sharon fruits compared to uncoated controls. A bilayer film of wheat gluten and beeswax significantly lowered weight loss from coated cheese cubes compared to single layer coating of wheat gluten.;


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 595 ◽  
Author(s):  
Mohammad Hassan ◽  
Linn Berglund ◽  
Ragab Abou-Zeid ◽  
Enas Hassan ◽  
Wafaa Abou-Elseoud ◽  
...  

Nanofibers isolated from unbleached neutral sulfite rice straw pulp were used to prepare transparent films without the need to modify the isolated rice straw nanofibers (RSNF). RSNF with loading from 1.25 to 10 wt.% were mixed with cellulose acetate (CA) solution in acetone and films were formed by casting. The films were characterized regarding their transparency and light transmittance, microstructure, mechanical properties, crystallinity, water contact angle, porosity, water vapor permeability, and thermal properties. The results showed good dispersion of RSNF in CA matrix and films with good transparency and homogeneity could be prepared at RSNF loadings of less than 5%. As shown from contact angle and atomic force microscopy (AFM) measurements, the RSNF resulted in increased hydrophilic nature and roughness of the films. No significant improvement in tensile strength and Young’s modulus was recorded as a result of adding RSNF to CA. Addition of the RSNF did not significantly affect the porosity, crystallinity and melting temperature of CA, but slightly increased its glass transition temperature.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1606
Author(s):  
Peng Yin ◽  
Jinglong Liu ◽  
Wen Zhou ◽  
Panxin Li

To improve the functional properties of starch-based films, chitin (CH) was prepared from shrimp shell powder and incorporated into corn starch (CS) matrix. Before blending, maleic anhydride (MA) was introduced as a cross-linker. Composite CS/MA-CH films were obtained by casting-evaporation approach. Mechanical property estimation showed that addition of 0–7 wt % MA-CH improved the tensile strength of starch films from 3.89 MPa to 9.32 MPa. Elongation at break of the films decreased with the addition of MA-CH, but the decrease was obviously reduced than previous studies. Morphology analysis revealed that MA-CH homogeneously dispersed in starch matrix and no cracks were found in the CS/MA-CH films. Incorporation of MA-CH decreased the water vapor permeability of starch films. The water uptake of the films was reduced when the dosage of MA-CH was below 5 wt %. Water contact angles of the starch films increased from 22° to 86° with 9 wt % MA-CH incorporation. Besides, the composite films showed better inhibition effect against Escherichia coli and Staphylococcus aureus than pure starch films.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1408 ◽  
Author(s):  
Jie Ding ◽  
Rong Zhang ◽  
Saeed Ahmed ◽  
Yaowen Liu ◽  
Wen Qin

In this study, we fabricated polyvinyl alcohol (PVA)/chitosan (CS) bilayer films by casting and investigated the effects of preparation conditions and CS content (2, 2.5, or 3 wt.%) on the ability of these films to preserve packaged strawberries. The best performance was achieved at a CS loading of 2.5 wt.% (ultrasound time, 25 min); the strain and stress values were 143.15 ± 6.43% and 70.67 ± 0.85 MPa, respectively, oxygen permeability was 0.16 ± 0.08 cm2·m2·day−1·MPa−1, water vapor permeability was 14.93 ± 4.09 g·cm−1·s−1·Pa−1, and the shelf life of fresh strawberries packaged in the PVA/CS 2.5 wt.% bilayer film was determined to be 21 days at 5 ± 2 °C and a relative humidity of 60 ± 5%. Treatment with PVA/CS bilayer films prevented the decrease in the firmness of strawberries during storage (21 days). The evaluated physicochemical parameters (weight loss, decay, firmness, titratable acidity, soluble solid content, ascorbic acid content, and color) indicated that treatment with PVA/CS bilayer films led to better maintenance of the fruit quality. We believe that our study makes a significant contribution to literature because it paves the way to the fabrication of smart packaging materials and facilitates the commercialization of fresh strawberries as an important health food.


Sign in / Sign up

Export Citation Format

Share Document