scholarly journals Parametric conditions and exact solution for the Duffing-Van der Pol class of equations

2018 ◽  
Vol 40 (3) ◽  
pp. 251-264
Author(s):  
Dao Huy Bich ◽  
Nguyen Dang Bich

This paper presents a methodology to find the exact solution and respective parametric conditions to the Duffing-Van der Pol class of equations. The supposed method in this paper is different from the Prelle and Singer method and the Lie symmetry method. The main idea of the supposed method is implemented in finding the first integrals of the original equation and leading this equation to a solved equation of lower order to which the exact solution can be obtained. As results the parametric conditions and the exact solutions in parametric forms are indicated. The algorithm for determining integral constants and the investigation of solution characteristics are considered.

2018 ◽  
Vol 32 (31) ◽  
pp. 1850383 ◽  
Author(s):  
Xuan Zhou ◽  
Wenrui Shan ◽  
Zhilei Niu ◽  
Pengcheng Xiao ◽  
Ying Wang

In this study, the Lie symmetry method is used to perform detailed analysis on the modified Zakharov–Kuznetsov equation. We have obtained the infinitesimal generators, commutator table of Lie algebra and symmetry group. In addition to that, optimal system of one-dimensional subalgebras up to conjugacy is derived and used to construct distinct exact solutions. These solutions describe the dynamics of nonlinear waves in isothermal multicomponent magnetized plasmas.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Isaiah Elvis Mhlanga ◽  
Chaudry Masood Khalique

We study two coupled systems of nonlinear partial differential equations, namely, generalized Boussinesq-Burgers equations and (2+1)-dimensional Davey-Stewartson equations. The Lie symmetry method is utilized to obtain exact solutions of the generalized Boussinesq-Burgers equations. The travelling wave hypothesis approach is used to find exact solutions of the (2+1)-dimensional Davey-Stewartson equations.


2021 ◽  
Author(s):  
Xi-zhong Liu ◽  
Jun Yu

Abstract A nonlocal Boussinesq equation is deduced from the local one by using consistent correlated bang method. To study various exact solutions of the nonlocal Boussinesq equation, it is converted into two local equations which contain the local Boussinesq equation. From the N-soliton solutions of the local Boussinesq equation, the N-soliton solutions of the nonlocal Boussinesq equation are obtained, among which the (N = 2, 3, 4)-soliton solutions are analyzed with graphs. Some periodic and traveling solutions of the nonlocal Boussinesq equation are derived directly from known solutions of the local Boussinesq equation. Symmetry reduction solutions of the nonlocal Boussinesq equation are also obtained by using the classical Lie symmetry method.


2018 ◽  
Vol 15 (07) ◽  
pp. 1850111
Author(s):  
Mohsin Umair ◽  
Tooba Feroze

In this paper, using the Lie symmetry method, we obtain optimal system, group invariants and exact solutions of [Formula: see text] dimensional Zabolotskaya–Khokhlov equation.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 154 ◽  
Author(s):  
Roman Cherniha ◽  
Vasyl’ Davydovych

The known three-component reaction–diffusion system modeling competition and co-existence of different language speakers is under study. A modification of this system is proposed, which is examined by the Lie symmetry method; furthermore, exact solutions in the form of traveling fronts are constructed and their properties are identified. Plots of the traveling fronts are presented and the relevant interpretation describing the language shift that has occurred in Ukraine during the Soviet times is suggested.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Khudija Bibi ◽  
Khalil Ahmad

In this article, new exact solutions of 2 + 1 -dimensional Date Jimbo Kashiwara Miwa (DJKM) equation are constructed by applying the Lie symmetry method. By considering similarity variables obtained through Lie symmetry generators, considered 2 + 1 -dimensional DJKM equation is transformed into a linear partial differential equation with reduction of one independent variable. Afterwards by using Lie symmetry generators of this linear PDE, different invariant solutions involving exponential and logarithmic functions are explored which lead to the new exact solutions of the DJKM equation. Graphical representations of the obtained solutions are also presented to show the significance of the current work.


2018 ◽  
Vol 73 (4) ◽  
pp. 357-362 ◽  
Author(s):  
Bo Zhang ◽  
Hengchun Hu

AbstractThe similarity reduction and similarity solutions of a Boussinesq-like equation are obtained by means of Clarkson and Kruskal (CK) direct method. By using Lie symmetry method, we also obtain the similarity reduction and group invariant solutions of the model. Further, we compare the results obtained by the CK direct method and Lie symmetry method, and we demonstrate the connection of the two methods.


Symmetry ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Wajeeha Irshad ◽  
Yousaf Habib ◽  
Muhammad Farooq

We calculated Noether-like operators and first integrals of a scalar second-order ordinary differential equation using the complex Lie-symmetry method. We numerically integrated the equations using a symplectic Runge–Kutta method. It was seen that these structure-preserving numerical methods provide qualitatively correct numerical results, and good preservation of first integrals is obtained.


2018 ◽  
Vol 32 (11) ◽  
pp. 1850127 ◽  
Author(s):  
S. Saha Ray

In this paper, the symmetry analysis and similarity reduction of the (2[Formula: see text]+[Formula: see text]1)-dimensional Bogoyavlensky–Konopelchenko (B–K) equation are investigated by means of the geometric approach of an invariance group, which is equivalent to the classical Lie symmetry method. Using the extended Harrison and Estabrook’s differential forms approach, the infinitesimal generators for (2[Formula: see text]+[Formula: see text]1)-dimensional B–K equation are obtained. Firstly, the vector field associated with the Lie group of transformation is derived. Then the symmetry reduction and the corresponding explicit exact solution of (2[Formula: see text]+[Formula: see text]1)-dimensional B–K equation is obtained.


Sign in / Sign up

Export Citation Format

Share Document