scholarly journals Absence of Singularity in Schwarzschild Metric in the Vector Model for Gravitational Field

2012 ◽  
Vol 18 (3) ◽  
pp. 175-184
Author(s):  
Vo Van On

In this paper, based on the vector model for gravitational field we deduce an equation to determinate the metric of space-time. This equation is similar to equation of Einstein. The metric of space-time outside a static spherically symmetric body is also determined. It gives a small supplementation to the Schwarzschild metric in General theory of relativity but the singularity does not exist. Especially, this model predicts the existence of a new universal body after a black hole.

2008 ◽  
Vol 08 (02) ◽  
pp. L141-L153
Author(s):  
THEO M. NIEUWENHUIZEN

Within the Relativistic Theory of Gravitation it is shown that the equation of state p = ρ holds near the center of a black hole. For the stiff equation of state p = ρ − ρc the interior metric is solved exactly. It is matched with the Schwarzschild metric, which is deformed in a narrow range beyond the horizon. The solution is regular everywhere, with a specific shape at the origin. The gravitational redshift at the horizon remains finite but is large, z ~ 1023 M⊙/M. Time keeps its standard role also in the interior. The energy of the Schwarzschild metric, shown to be minus infinity in the General Theory of Relativity, is regularized in this setup, resulting in E = Mc2.


2011 ◽  
Vol 14 (1) ◽  
pp. 78-84
Author(s):  
On Van Vo

In this paper, based on the vector model for gravitational field we obtained the modified Friedman equations, which were similar to the classical Friedman equations but were added a term of energy – momentum tensor of gravitational field. Non- static flat cosmological model in this model was similar to General Theory of Relativity (GTR) ‘s model but the expansive rate in the vacuum age was difference with General Theory of Relativity ’s model.


Science ◽  
2019 ◽  
Vol 365 (6454) ◽  
pp. 664-668 ◽  
Author(s):  
Tuan Do ◽  
Aurelien Hees ◽  
Andrea Ghez ◽  
Gregory D. Martinez ◽  
Devin S. Chu ◽  
...  

The general theory of relativity predicts that a star passing close to a supermassive black hole should exhibit a relativistic redshift. In this study, we used observations of the Galactic Center star S0-2 to test this prediction. We combined existing spectroscopic and astrometric measurements from 1995–2017, which cover S0-2’s 16-year orbit, with measurements from March to September 2018, which cover three events during S0-2’s closest approach to the black hole. We detected a combination of special relativistic and gravitational redshift, quantified using the redshift parameter ϒ. Our result, ϒ = 0.88 ± 0.17, is consistent with general relativity (ϒ = 1) and excludes a Newtonian model (ϒ = 0) with a statistical significance of 5σ.


Author(s):  
William S. Oakley

<p class="abstract">The long standing major issue in physics has been the inability to unify the two main theories of quantum electro-dynamics (QED) and the general theory of relativity (GTR), both of which are well proven and cannot accommodate significant change. The problem is resolved by combining the precepts of GTR and QED in a conceptual model describing the electron as electromagnetic (EM) energy localized in relativistic quantum loops near an event horizon. EM energy is localized by propagating in highly curved space-time of closed geometry, the local metric index increases, and the energy is thus relativistic to the observer at velocity v &lt; c, with the curved space-time thereby evidencing gravity. The presence of gravity leads to the observer notion of mass. Particle energy is in dynamic equilibrium with relativistic loop circumferential metric strain at the strong force scale opposed by radial metric strain. The resulting particle is a quantum black hole with the circumferential strong force in the curved metric orthogonal in two dimensions to all particle radials. The presence of energy E is thus evident in observer space reduced by c<sup>2</sup> to E/c<sup>2</sup> = mass. The circumferential strain diminishes as it extends into the surrounding metric as the particle’s gravitational field. The radial strain projects outward into observer space and is therein evident as electric field. Gravity, unit charge, and their associated fields are emergent properties and Strong and electric forces are equal within the particle, quantizing gravity and satisfying the Planck scale criteria of force equality. A derived scaling factor produces the gravity effect experienced by the observer and the GRT-QED unification issue is thereby largely resolved.</p>


Author(s):  
David D. Nolte

This chapter describes how gravity provided the backdrop for one of the most important paradigm shifts in the history of physics. Prior to Albert Einstein’s general theory of relativity, trajectories were paths described by geometry. After the theory of general relativity, trajectories are paths caused by geometry. This chapter explains how Einstein arrived at his theory of gravity, relying on the space-time geometry of Hermann Minkowski, whose work he had originally harshly criticized. The confirmation of Einstein’s theory was one of the dramatic high points in twentieth-century history of physics when Arthur Eddington journeyed to an island off the coast of Africa to observe stellar deflections during a solar eclipse. If Galileo was the first rock star of physics, then Einstein was the first worldwide rock star of science.


Author(s):  
Hanoch Gutfreund ◽  
Jürgen Renn

This section presents annotations of the manuscript of Albert Einstein's canonical 1916 paper on the general theory of relativity. It begins with a discussion of the foundation of the general theory of relativity, taking into account Einstein's fundamental considerations on the postulate of relativity, and more specifically why he went beyond the special theory of relativity. It then considers the spacetime continuum, explaining the role of coordinates in the new theory of gravitation. It also describes tensors of the second and higher ranks, multiplication of tensors, the equation of the geodetic line, the formation of tensors by differentiation, equations of motion of a material point in the gravitational field, the general form of the field equations of gravitation, and the laws of conservation in the general case. Finally, the behavior of rods and clocks in the static gravitational field is examined.


Sign in / Sign up

Export Citation Format

Share Document