COMPARATIVE STUDY OF HERB LAYER DIVERSITY IN PINE FOREST STANDS AT DIFFERENT ALTITUDES OF CENTRAL HIMALAYA

2004 ◽  
Vol 2 (2) ◽  
pp. 11-24
Author(s):  
G KHARKWAL
2020 ◽  
Vol 2 (7) ◽  
Author(s):  
Shweta Goyal ◽  
Rakshit Pathak ◽  
H. K. Pandey ◽  
Anjali Kumari ◽  
Geeta Tewari ◽  
...  

Forests ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 158 ◽  
Author(s):  
Darío Domingo ◽  
María Lamelas ◽  
Antonio Montealegre ◽  
Alberto García-Martín ◽  
Juan de la Riva

2013 ◽  
Vol 9 (1) ◽  
pp. 43-56
Author(s):  
Bálint Horváth ◽  
Viktória Tóth ◽  
Gyula Kovács

Abstract Vegetation beneath the canopy might be an important factor for macromoth community composition in forest ecosystems, strongly determined by forest management practices. Herein, we compared nocturnal macrolepidoptera communities and herb layers in young and old sessile oak (Quercus petraea) dominated forest stands in the Sopron Mountains (Western Hungary). The investigation of Lepidoptera species was performed 15 times from the end of March to the end of October in 2011. Portable light traps were used, and a total of 257 species and 5503 individuals were identified. The Geometridae family was the most abundant, followed by Noctuidae and Notodontidae. To investigate vascular plant species in the herb layer, circular plots with a 10-m radius around the moth traps were used. In each plot, we estimated the abundance of plant species in 20 sub-plots with a 1-m radius from May to July of 2011. The abundance of macromoth species was higher in the old forest stand, which might be influenced by the trees’ higher foliar biomass. However, the mean abundance of herbs was lower in the old forest. Diversity of both the herb layer and the moth community were significantly higher in the young forest. However we found higher species richness of moths in the old forest. For additional analyses, moths feeding on plants in the herb layer were selected, but neither the difference in species number, neither mean abundance between the young and old forest were significant. Our results suggest that the herb layer is not a key factor for macrolepidoptera communities in Hungarian sessile oak forest stands.


2020 ◽  
Vol 12 (8) ◽  
pp. 1298 ◽  
Author(s):  
Ewa Grabska ◽  
Paweł Hawryło ◽  
Jarosław Socha

Climate change and severe extreme events, i.e., changes in precipitation and higher drought frequency, have a large impact on forests. In Poland, particularly Norway spruce and Scots pine forest stands are exposed to disturbances and have, thus experienced changes in recent years. Considering that Scots pine stands cover approximately 58% of forests in Poland, mapping these areas with an early and timely detection of forest cover changes is important, e.g., for forest management decisions. A cost-efficient way of monitoring forest changes is the use of remote sensing data from the Sentinel-2 satellites. They monitor the Earth’s surface with a high temporal (2–3 days), spatial (10–20 m), and spectral resolution, and thus, enable effective monitoring of vegetation. In this study, we used the dense time series of Sentinel-2 data from the years 2015–2019, (49 images in total), to detect changes in coniferous forest stands dominated by Scots pine. The simple approach was developed to analyze the spectral trajectories of all pixels, which were previously assigned to the probable forest change mask between 2015 and 2019. The spectral trajectories were calculated using the selected Sentinel-2 bands (visible red, red-edge 1–3, near-infrared 1, and short-wave infrared 1–2) and selected vegetation indices (Normalized Difference Moisture Index, Tasseled Cap Wetness, Moisture Stress Index, and Normalized Burn Ratio). Based on these, we calculated the breakpoints to determine when the forest change occurred. Then, a map of forest changes was created, based on the breakpoint dates. An accuracy assessment was performed for each detected date class using 861 points for 46 classes (45 dates and one class representing no changes detected). The results of our study showed that the short-wave infrared 1 band was the most useful for discriminating Scots pine forest stand changes, with the best overall accuracy of 75%. The evaluated vegetation indices underperformed single bands in detecting forest change dates. The presented approach is straightforward and might be useful in operational forest monitoring.


Sign in / Sign up

Export Citation Format

Share Document