scholarly journals Sea surface temperature data for coral Symbiodinium study from in situ data loggers and JPL MUR data, Belize Mesoamerican Barrier Reef System (MBRS), 2003-2015

Author(s):  
Karl Castillo
2021 ◽  
Vol 13 (13) ◽  
pp. 2431
Author(s):  
Yasumasa Miyazawa ◽  
Sergey M. Varlamov ◽  
Toru Miyama ◽  
Yukio Kurihara ◽  
Hiroshi Murakami ◽  
...  

We have developed an ocean state nowcast/forecast system (JCOPE-T DA) that targets the coastal waters around Japan and assimilates daily remote sensing and in situ data. The ocean model component is developed based on the Princeton Ocean Model with a generalized sigma coordinate and calculates oceanic conditions with a 1/36-degree (2–3 km) resolution and an hourly result output interval. To effectively represent oceanic phenomena with a spatial scale smaller than 100 km, we adopted a data assimilation scheme that explicitly separates larger and smaller horizontal scales from satellite sea surface temperature data. Our model is updated daily through data assimilation using the latest available remote-sensing data. Here we validate the data assimilation products of JCOPE-T DA using various kinds of in situ observational data. This validation proves that the JCOPE-T DA model output outperforms those of a previous version of JCOPE-T, which is based on nudging the values of temperature and salinity toward those provided by a different coarse grid data-assimilated model JCOPE2M. Parameter sensitivity experiments show that the selection of horizontal scale separation parameters considerably affects the representation of sea surface temperature. Additional experiments demonstrate that the assimilation of daily-updated satellite sea surface temperature data actually improves the model’s efficiency in representing typhoon-induced disturbances of sea surface temperature on a time scale of a few days. Assimilation of additional in situ data, such as temperature/salinity/ocean current information, further improves the model’s ability to represent the ocean currents near the coast accurately.


Author(s):  
M. A. Syariz ◽  
L. M. Jaelani ◽  
L. Subehi ◽  
A. Pamungkas ◽  
E. S. Koenhardono ◽  
...  

The Sea Surface Temperature (SST) retrieval from satellites data Thus, it could provide SST data for a long time. Since, the algorithms of SST estimation by using Landsat 8 Thermal Band are sitedependence, we need to develop an applicable algorithm in Indonesian water. The aim of this research was to develop SST algorithms in the North Java Island Water. The data used are in-situ data measured on April 22, 2015 and also estimated brightness temperature data from Landsat 8 Thermal Band Image (band 10 and band 11). The algorithm was established using 45 data by assessing the relation of measured in-situ data and estimated brightness temperature. Then, the algorithm was validated by using another 40 points. The results showed that the good performance of the sea surface temperature algorithm with coefficient of determination (<i>R</i><sup>2</sup>) and Root Mean Square Error (<i>RMSE</i>) of 0.912 and 0.028, respectively.


Sign in / Sign up

Export Citation Format

Share Document