scholarly journals Atherosclerosis pathogenesis from the perspective of microvascular dysfunction

2021 ◽  
Vol 20 (7) ◽  
pp. 3076
Author(s):  
D. M. Aronov ◽  
M. G. Bubnova ◽  
O. M. Drapkina

The article discusses different points of view on atherosclerosis development. The facts confirming the lipid hypothesis are presented. Attention is drawn to the possible participation of vasa vasorum in the development of atherosclerosis.

2021 ◽  
Vol 22 (14) ◽  
pp. 7574
Author(s):  
Jeanette Owusu ◽  
Eugene Barrett

The arterial vasa vasorum is a specialized microvasculature that provides critical perfusion required for the health of the arterial wall, and is increasingly recognized to play a central role in atherogenesis. Cardio-metabolic disease (CMD) (including hypertension, metabolic syndrome, obesity, diabetes, and pre-diabetes) is associated with insulin resistance, and characteristically injures the microvasculature in multiple tissues, (e.g., the eye, kidney, muscle, and heart). CMD also increases the risk for atherosclerotic vascular disease. Despite this, the impact of CMD on vasa vasorum structure and function has been little studied. Here we review emerging information on the early impact of CMD on the microvasculature in multiple tissues and consider the potential impact on atherosclerosis development and progression, if vasa vasorum is similarly affected.


2007 ◽  
Vol 2 (5) ◽  
pp. 527-534 ◽  
Author(s):  
Judith Brands ◽  
Jurgen WGE Van Teeffelen ◽  
Bernard M Van den Berg ◽  
Hans Vink

Author(s):  
T. Yanaka ◽  
K. Shirota

It is significant to note field aberrations (chromatic field aberration, coma, astigmatism and blurring due to curvature of field, defined by Glaser's aberration theory relative to the Blenden Freien System) of the objective lens in connection with the following three points of view; field aberrations increase as the resolution of the axial point improves by increasing the lens excitation (k2) and decreasing the half width value (d) of the axial lens field distribution; when one or all of the imaging lenses have axial imperfections such as beam deflection in image space by the asymmetrical magnetic leakage flux, the apparent axial point has field aberrations which prevent the theoretical resolution limit from being obtained.


Author(s):  
L.R. Wallenberg ◽  
J.-O. Bovin ◽  
G. Schmid

Metallic clusters are interesting from various points of view, e.g. as a mean of spreading expensive catalysts on a support, or following heterogeneous and homogeneous catalytic events. It is also possible to study nucleation and growth mechanisms for crystals with the cluster as known starting point.Gold-clusters containing 55 atoms were manufactured by reducing (C6H5)3PAuCl with B2H6 in benzene. The chemical composition was found to be Au9.2[P(C6H5)3]2Cl. Molecular-weight determination by means of an ultracentrifuge gave the formula Au55[P(C6H5)3]Cl6 A model was proposed from Mössbauer spectra by Schmid et al. with cubic close-packing of the 55 gold atoms in a cubeoctahedron as shown in Fig 1. The cluster is almost completely isolated from the surroundings by the twelve triphenylphosphane groups situated in each corner, and the chlorine atoms on the centre of the 3x3 square surfaces. This gives four groups of gold atoms, depending on the different types of surrounding.


VASA ◽  
2019 ◽  
Vol 48 (2) ◽  
pp. 115-125 ◽  
Author(s):  
Xin Li ◽  
Daniel Staub ◽  
Vasileios Rafailidis ◽  
Mohammed Al-Natour ◽  
Sanjeeva Kalva ◽  
...  

Abstract. Ultrasound has been established as an important diagnostic tool in assessing vascular abnormalities. Standard B-mode and Doppler techniques have inherent limitations with regards to detection of slow flow and small vasculature. Contrast-enhanced ultrasound (CEUS) is a complementary tool and is useful in assessing both the macro- and microvascular anatomy of the aorta. CEUS can also provide valuable physiological information in real-time scanning sessions due to the physical and safety profiles of the administered microbubbles. From a macrovascular perspective, CEUS has been used to characterize aortic aneurysm rupture, dissection and endoleaks post-EVAR repair. With regard to microvasculature CEUS enables imaging of adventitial vasa vasorum thereby assessing aortic inflammation processes, such as monitoring treatment response in chronic periaortitis. CEUS may have additional clinical utility since adventitial vasa vasorum has important implications in the pathogenesis of aortic diseases. In recent years, there have been an increasing number of studies comparing CEUS to cross-sectional imaging for aortic applications. For endoleak surveillance CEUS has been shown to be equal or in certain cases superior in comparison to CT angiography. The recent advancement of CEUS software along with the ongoing development of drug-eluting contrast microbubbles has allowed improved targeted detection and real-time ultrasound guided therapy for aortic vasa vasorum inflammation and neovascularization in animal models. Therefore, CEUS is uniquely suited to comprehensively assess and potentially treat aortic vascular diseases in the future.


1968 ◽  
Vol 20 (01/02) ◽  
pp. 247-256 ◽  
Author(s):  
M Pandolfi ◽  
B Robertson ◽  
S Isacson ◽  
Inga Marie Nilsson

SummaryA modification of the fibrin slide method of Todd permitting a semiquantitative estimation of the fibrinolytic activity in tissue sections is described. By means of this technique, the authors have studied the fibrinolytic activity of the great saphenous vein and of superficial veins of the arm and leg in patients suffering from varices and in normal subjects. It was found that:1. Fibrinolytic activity is localized, in these vessels, mainly to the vasa vasorum of the adventitia. The media is moderately active. Intimal cells are active only when detached.2. The great saphenous vein is more active above than below the knee.3. The veins of the arm are definitely more active than the veins of the leg.4. The activator of plasminogen demonstrated in the sections by the fibrin slide method is a fairly stable enzyme still active after exposure to 60° C and resistent to moderate variations of pH.


1996 ◽  
Vol 75 (06) ◽  
pp. 933-938 ◽  
Author(s):  
Marten Fålkenberg ◽  
Johan Tjärnstrom ◽  
Per Örtenwall ◽  
Michael Olausson ◽  
Bo Risberg

SummaryLocal fibrinolytic changes in atherosclerotic arteries have been suggested to influence plaque growth and promote mural thrombosis on ruptured or ulcerated plaques. Increased levels of plasminogen activator inhibitor (PAI-1) have been found in atherosclerotic arteries. In this study tissue plasminogen activator (t-PA), urokinase-type plasminogen activator (u-PA) and PAI-1 were localized in arterial biopsies of healthy and atherosclerotic vessels by immunohistochemis-try. The expression of fibrinolytic regulators was related to the distribution of endothelial cells (EC) and macrophages. Results: t-PA was expressed in vasa vasorum. PAI-1 was positive in endothelial cells, in the media and in the adventitia. Increased expression of t-PA, u-PA and PAI-1 was found in atherosclerotic vessels. t-PA, u-PA, PAI-1 and macrophages were co-localized in plaques. These results support the concept that macrophages can be important in the local regulation of fibrinolysis in atherosclerotic vessels.


Sign in / Sign up

Export Citation Format

Share Document