scholarly journals Effect of Pesticides on Enzymatic Activity in Soil

Author(s):  
Maria- Mihaela MICUȚI ◽  
Liliana BĂDULESCU ◽  
Florentina ISRAEL-ROMING

The focus of this article is to provide informations about soil enzymatic activity as a biological indicator for impacts of pesticides on soils. In this experiment, an ecological soil was treated with two types of fungicide (Ridomil Gold and Bravo 500) and two of insecticides (Mospilan 20SG and Vertimec 1.8% EC). The pesticides were assessed for their effect on different enzymatic activities. They were administrated over a 28 days period and the samples of soil were taken once every 7 days and analyzed in the laboratory. For each sample was determined the enzymatic activity, pH, humidity. The enzymatic activity was assessed using colorimetrical methods. Enzymes chosen for this study were cellulase, amylase, xylanase, urease, alkaline and acid phosphatase. Results shown that the enzymatic activity can increase or decrease when the soil was treated with the fungicides and insecticides chosen for this experiment.

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2213
Author(s):  
Barbara Futa ◽  
Piotr Kraska ◽  
Sylwia Andruszczak ◽  
Paweł Gierasimiuk ◽  
Monika Jaroszuk-Sierocińska

Soil biochemical properties shaping soil fertility and agro-ecosystem productivity depend on the reduced tillage system and the dose and method of application of fertilizer; therefore, the research hypothesis put forward proposes that under reduced tillage system conditions, the subsurface application of a multi-component mineral fertilizer would increase soil enzymatic activity, thus favourably influencing the biodiversity of the soil environment. The objective of the three-year study was to evaluate the impact of subsurface application of varying mineral fertilizer rates on soil enzymatic activity under reduced tillage system conditions in soybean, winter wheat and maize rotations. The field experiment was set up as a split-plot design in four replicates. The first experimental factor included two methods of mineral fertilization application: fertilizer broadcast over the soil surface (S); fertilizer applied deep (subsurface placed) using a specially designed cultivator (Sub-S). The other factor was the rates of the mineral fertilizer (NPKS): 85 kg∙ha−1 (F85) and 170 kg∙ha−1 (F170). The method of application and rate of mineral fertilizer did not have a significant effect on the organic carbon and total nitrogen content in the soil of the plots with all rotational crops. Subsurface application of fertilizer significantly increased available phosphorus content in soil under soybean and winter wheat crops; however, it significantly decreased soil pHKCl values within sites with all crops in the rotation compared to surface application. At the same time, deep application of mineral fertilizer significantly stimulated dehydrogenase activity in the soil under the winter wheat crops and acid phosphatase activity in the soil under all rotation crops. The higher level of mineral fertilization contributed to reduction of soil pHKCl under winter wheat and maize, and promoted an increase in the soil P content. Additionally, significant increases of dehydrogenases and urease activity in the soil under winter wheat and maize crops, alkaline phosphatase activity in the soil under all the studied crops, and acid phosphatase activity in the soil under the soybean crops were found, compared to mineral fertilizer in the amount of 85 kg NPKS∙ha−1. The results of the present study have demonstrated a positive effect of subsurface application of compound mineral fertilizer on the soil biochemical parameters in reduced tillage. This may be a recommendation for the subsurface use of multicomponent mineral fertilizers in sustainable agriculture. However, a full objective characterization of the soil environment processes induced by in-depth application of mineral fertilizer in reduced tillage requires long-term monitoring.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1542
Author(s):  
Martina Kracmarova ◽  
Hana Kratochvilova ◽  
Ondrej Uhlik ◽  
Michal Strejcek ◽  
Jirina Szakova ◽  
...  

Fertilization is a worldwide agricultural practice used in agronomy to increase crop yields. Fertilizer application influences overall soil characteristics, including soil microbial community composition and metabolic processes mediated by microbial enzymatic activity. Changes in the structure of microbial communities and their metabolic activity after long-term fertilization were studied in this research. We hypothesized that the different types of fertilization regimes affect nutrient levels in the soil which subsequently influence the metabolic processes and microbial diversity and community structure. Manure (MF; 330 kg N/ha), sewage sludge at two application doses (SF; 330 kg N/ha and SF3x; 990 kg N/ha) and chemical (NPK; N-P-K nutrients in concentrations of 330-90-300 kg/ha) fertilizers have been applied regularly to an experimental field since 1996. The microbial diversity increased in all soils amended with both organic (MF, SF, SF3x) and chemical (NPK) fertilizers. The shifts in microbial communities were observed, which were mainly caused by less abundant genera that were mostly associated with one or more fertilization treatment(s). Fertilization also influenced soil chemistry and the activity of β-xylosidase, β-N-acetylglucosaminidase (NAG), acid phosphatase and FDA-hydrolases. Specifically, all fertilization treatments were associated with a higher activity of β xylosidase and lower NAG activity. Only the NPK treatment was associated with a higher activity of acid phosphatase.


On the grey forest medium-loamy soil of Vladimir Opolye region we have studied the impact of various methods of basic cultivation and fertilizer systems on the activity of redox and hydrolytic enzymes: ure-ase (nitrogen cycle), invertase (carbon cycle), phosphatase (phosphorus cycle), and catalase, involved in the cycle of carbon in the soil. The second humus horizon with capacity of 19-24cm was found at the depth of 20 - 21 cm on the experimental field. We have studied three modes of basic soil cultivation: an-nual shallow flat plowing (6-8 cm), annual deep flat plowing (20-22 cm), and annual moldboard plowing (20-22 cm) with normal and intensive application of fertilizers. The most enzymatically active layer is 0-20 cm. No relevant difference has been found in the level of enzymes activity between variants of basic soil treatment. Activity of enzymes increases with application of fertilizers on the intensive background. In agrogenic soils, soil enzymatic activity is lower on average by 16-22% compared to the soil of the res-ervoir. The biggest negative transformation of activity has been observed at the urease enzyme (up to 50%). With annual moldboard plowing on the intensive backgroung, enzyme activity has been close to the natural level – 98.4%. Catalise and invertase activity in this case were found to be higher (105 and 116% respectively) than that of natural analogues. Activity of enzymes increases with intensive application of fertilizers as compared with normal background. This is particularly evident with 6-8cm deep beardless plowing and 20-22cm deep moldboard plowing. In general, the obtained biochemical indicators charac-terize the highest environmental sustainability of this variation within our research.


2018 ◽  
Vol 48 (4) ◽  
pp. 420-428
Author(s):  
Johana Juliet Caballero Vanegas ◽  
Karen Bibiana Mejía Zambrano ◽  
Lizeth Manuela Avellaneda-Torres

ABSTRACT Understanding the impacts of agricultural practices on soil quality indicators, such as enzymatic activities, is of great importance, in order to advance in their diagnosis and sustainable management. This study aimed to evaluate the effect of ecological and conventional agricultural managements on enzymatic activities of a soil under coffee agroecosystems. The enzymatic activities were associated with the biogeochemical cycles of nitrogen (urease and protease), phosphorus (acid and alkaline phosphatase) and carbon (β-glucosidase), during the rainy and dry seasons. Physical-chemical soil proprieties were also assessed and related to resilience scores linked to the climatic variability reported for the areas under study. The activities of urease, alkaline and acid phosphatase and ß-glucosidase were statistically higher in ecological agroecosystems than in conventional ones. This may be attributed to the greater application of organic waste in the ecological environment, as well as to the absence of pesticides and synthetic fertilizers, which allow better conditions for the microbial activity. The resilience scores to the climate variability that showed the highest correlations with the assessed enzymatic activities were: the farmers' knowledge on soil microorganisms, non-use of pesticides and synthetic fertilizers and non-dependence on external supplies. It was concluded that the enzymatic activities are modified by the management systems, being specifically favored by the ecological management. This agroecosystem, in the long term, ensures an efficient use of the soil resources, with a lower degradation and contamination.


2021 ◽  
Vol 7 (7) ◽  
pp. 571
Author(s):  
Dilfuza Jabborova ◽  
Kannepalli Annapurna ◽  
Sangeeta Paul ◽  
Sudhir Kumar ◽  
Hosam A. Saad ◽  
...  

Biochar and arbuscular mycorrhizal fungi (AMF) can promote plant growth, improve soil properties, and maintain microbial activity. The effects of biochar and AMF on plant growth, root morphological traits, physiological properties, and soil enzymatic activities were studied in spinach (Spinacia oleracea L.). A pot experiment was conducted to evaluate the effect of biochar and AMF on the growth of spinach. Four treatments, a T1 control (soil without biochar), T2 biochar alone, T3 AMF alone, and T4 biochar and AMF together, were arranged in a randomized complete block design with five replications. The biochar alone had a positive effect on the growth of spinach, root morphological traits, physiological properties, and soil enzymatic activities. It significantly increased the plant growth parameters, such as the shoot length, leaf number, leaf length, leaf width, shoot fresh weight, and shoot dry weight. The root morphological traits, plant physiological attributes, and soil enzymatic activities were significantly enhanced with the biochar alone compared with the control. However, the combination of biochar and AMF had a greater impact on the increase in plant growth, root morphological traits, physiological properties, and soil enzymatic activities compared with the other treatments. The results suggested that the combined biochar and AMF led to the highest levels of spinach plant growth, microbial biomass, and soil enzymatic activity.


2006 ◽  
Vol 70 (6) ◽  
pp. 1069-1076 ◽  
Author(s):  
Snezana Jesic ◽  
Ljuba Stojiljkovic ◽  
Zeljko Petrovic ◽  
Vladimir Djordjevic ◽  
Vladimir Nesic ◽  
...  

2012 ◽  
Vol 287 (15) ◽  
pp. 12405-12416 ◽  
Author(s):  
Tong Zhang ◽  
Jhoanna G. Berrocal ◽  
Jie Yao ◽  
Michelle E. DuMond ◽  
Raga Krishnakumar ◽  
...  

NMNAT-1 and PARP-1, two key enzymes in the NAD+ metabolic pathway, localize to the nucleus where integration of their enzymatic activities has the potential to control a variety of nuclear processes. Using a variety of biochemical, molecular, cell-based, and genomic assays, we show that NMNAT-1 and PARP-1 physically and functionally interact at target gene promoters in MCF-7 cells. Specifically, we show that PARP-1 recruits NMNAT-1 to promoters where it produces NAD+ to support PARP-1 catalytic activity, but also enhances the enzymatic activity of PARP-1 independently of NAD+ production. Furthermore, using two-photon excitation microscopy, we show that NMNAT-1 catalyzes the production of NAD+ in a nuclear pool that may be distinct from other cellular compartments. In expression microarray experiments, depletion of NMNAT-1 or PARP-1 alters the expression of about 200 protein-coding genes each, with about 10% overlap between the two gene sets. NMNAT-1 enzymatic activity is required for PARP-1-dependent poly(ADP-ribosyl)ation at the promoters of commonly regulated target genes, as well as the expression of those target genes. Collectively, our studies link the enzymatic activities of NMNAT-1 and PARP-1 to the regulation of a set of common target genes through functional interactions at target gene promoters.


Sign in / Sign up

Export Citation Format

Share Document