scholarly journals Pachira aquatica fruits shells valorization: renewables phenolics through analytical pyrolysis study (Py-GC/MS)

2022 ◽  
Vol 52 (2) ◽  
Author(s):  
Luiz Augusto da Silva Correia ◽  
Janduir Egito da Silva ◽  
Guilherme Quintela Calixto ◽  
Dulce Maria de Araújo Melo ◽  
Renata Martins Braga

ABSTRACT: This research valorized Pachira aquatica Aubl.’s fruit shells (PAS) through its energetic characterization and flash pyrolysis for biofuels or chemicals production. The characterization was performed through proximate and ultimate analysis, bulk density, higher heating value (HHV), hemicellulose, cellulose and lignin content, thermogravimetric analysis and absorption spectra in the infrared region obtained by Fourier-transform infrared spectroscopy technique (FTIR). The analytical flash pyrolysis was performed at 500°C in a Py-5200 HP-R coupled to a gas chromatograph (Py-GC/MS). The PAS biomass presents potential for thermochemical energy conversion processes due to its low moisture and ash content, 76.90% of volatile matter, bulk density of 252.6 kg/m3 and HHV of 16.24 MJ/kg. Flash pyrolysis products are mostly phenols or light organic acids derived from the decomposition of polysaccharides. Results confirmed the potential of PAS to produce bio-phenolics, such as 4-methoxyphenol which is an important active ingredient for skin depigmentation used in drugs and cosmetics, and as phenolic extract that can be used as a precursor to resins, applications that convert this forest waste into bio products for industry into a green circular economy.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Janduir Egito da Silva ◽  
Guilherme Quintela Calixto ◽  
Rodolfo Luiz Bezerra de Araújo Medeiros ◽  
Marcus Antônio de Freitas Melo ◽  
Dulce Maria de Araújo Melo ◽  
...  

AbstractThis study aims to analyze the products of the catalytic pyrolysis of naturally colored cotton residues, type BRS (seeds from Brazil), called BRS-Verde, BRS-Rubi, BRS-Topázio and BRS-Jade. The energy characterization of biomass was evaluated through ultimate and proximate analysis, higher heating value, cellulose, hemicellulose and lignin content, thermogravimetric analysis and apparent density. Analytical pyrolysis was performed at 500 °C in an analytical pyrolyzer from CDS Analytical connected to a gas chromatograph coupled to the mass spectrometer (GC/MS). The pyrolysis vapors were reformed at 300 and 500 °C through thermal and catalytic cracking with zeolites (ZSM-5 and HZSM-5). It has been noticed that pyrolysis vapor reforming at 500 °C promoted partial deoxygenation and cracking reactions, while the catalytic reforming showed better results for the product deoxygenation. The catalyst reforming of pyrolysis products, especially using HZSM-5 at 500 °C, promoted the formation of monoaromatics such as benzene, toluene, xylene and styrene, which are important precursors of polymers, solvents and biofuels. The main influence on the yields of these aromatic products is due to the catalytic activity of ZSM-5 favored by increased temperature that promotes cracking reactions due expanded zeolites channels.


CERNE ◽  
2014 ◽  
Vol 20 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Thiago de Paula Protásio ◽  
Rosalvo Maciel Guimarães Neto ◽  
João de Deus Pereira de Santana ◽  
José Benedito Guimarães Júnior ◽  
Paulo Fernando Trugilho

This study aimed to examine the relationships between the characteristics of charcoal from Qualea parviflora Mart. using canonical correlation analysis. Five trees were analyzed in such way that 5-cm thick discs were removed from each tree at the base, DBH (1.30 m), middle and top sections. The wood was carbonized in a muffle furnace at a heating rate of 1.67 °C min-1. A canonical correlation analysis was conducted to investigate the relationships between the group formed by fixed carbon, volatile matter, ash, elemental carbon, hydrogen, nitrogen, sulfur and oxygen levels and a second group formed by the gravimetric yield, higher heating value and relative bulk density of the charcoal. A tendency was noted for high levels of fixed carbon and elemental carbon to be associated to low levels of volatile matter, ash and oxygen and to low gravimetric yield. Fixed carbon and elemental carbon levels had a positive relation to higher heating value and to relative bulk density, whereas volatile matter, ash and oxygen levels had a negative relation to such characteristics. The higher the gravimetric yield from carbonization, the higher the volatile matter, ash and oxygen levels will be in the resulting charcoal.


Author(s):  
Mayara de Oliveira Lessa ◽  
Guilherme Quintela Calixto ◽  
Bruna Maria Emerenciano das Chagas ◽  
Emerson Moreira Aguiar ◽  
Marcus Antônio de Freitas Melo ◽  
...  

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Munique Gonçalves Guimarães ◽  
Rafael Benjamin Werneburg Evaristo ◽  
Augusto César de Mendonça Brasil ◽  
Grace Ferreira Ghesti

AbstractThe present work analyzed the energy generation potential of Buriti (Mauritia flexuosa L. f.) by thermochemical reactions. The experimental part of the study performed immediate analyses, elemental analyses, lignocellulosic analysis, thermogravimetric analysis, calorific values, and syn gas concentrations measurements of the gasification of Buriti in a fixed-bed reactor. Additionally, numerical simulations estimated the syn gas concentrations of the gasification reactions of Buriti. The immediate analysis showed that Buriti has the highest ash content (4.66%) and highest volatile matter content (85%) compared to other Brazilian biomass analyzed, but the higher heating value was only 18.28 MJ.kg−1. The elemental analysis revealed that the oxygen to carbon ratio was 0.51 while hydrogen to carbon ratio was 1.74, indicating a good thermal conversion efficiency. The Lignocellulosic analysis of Buriti resulted in a high content of holocellulose (69.64%), a lignin content of 28.21% and extractives content of 7.52%. The thermogravimetry of the Buriti indicated that the highest mass loss (51.92%) occurred in a temperature range between 150 °C and 370 °C. Lastly, the experimental gasification study in a fixed-bed updraft gasifier resulted in syn gas concentrations of 14.4% of CO, 11.5% of CO2 and 17.5% of H2 while the numerical simulation results confirmed an optimal equivalence ratio of 1.7 to maximize CO and H2 concentrations. Therefore, based on the results presented by the present work, the gasification process is adequate to transform Buriti wastes into energy resources. Graphic abstract


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paula Gabriella Surdi de Castro ◽  
Vinícius Resende de Castro ◽  
Antonio José Vinha Zanuncio ◽  
José Cola Zanuncio ◽  
Angélica de Cássia Oliveira Carneiro ◽  
...  

AbstractThe use of wood panel residues as biomass for energy production is feasible. Heat treatments can improve energy properties while minimizing the emission of toxic gases due to thermoset polymers used in Medium Density Fiberboard (MDF) panels. Torrefaction or pre-carbonization, a heat treatment between 200 and 300 °C with low oxygen availability accumulates carbon and lignin, decreases hygroscopicity, and increases energy efficiency. The objective of this work was to evaluate the energy parameters (immediate, structural, and elementary chemical composition, moisture content, and yield) and density in torrefied MDF panels. The torrefaction improved the energetic features of coated MDF, decreasing the moisture content, volatile matter, and consequently, concentrating the carbon with better results in the samples torrefied for 40 min. The densitometric profiles of the torrefied MDF, obtained by X-ray densitometry, showed a decrease in the apparent density as torrefaction time increased. The digital X-ray images in gray and rainbow scale enabled the most detailed study of the density variation of MDF residues.


2017 ◽  
Vol 25 (5) ◽  
pp. 301-310 ◽  
Author(s):  
Jetsada Posom ◽  
Panmanas Sirisomboon

This research aimed to determine the higher heating value, volatile matter, fixed carbon and ash content of ground bamboo using Fourier transform near infrared spectroscopy as an alternative to bomb calorimetry and thermogravimetry. Bamboo culms used in this study had circumferences ranging from 16 to 40 cm. Model development was performed using partial least squares regression. The higher heating value, volatile matter, fixed carbon and ash content were predicted with coefficients of determination (r2) of 0.92, 0.82, 0.85 and 0.51; root mean square error of prediction (RMSEP) of 122 J g−1, 1.15%, 1.00% and 0.77%; ratio of the standard deviation to standard error of validation (RPD) of 3.66, 2.55, 2.62 and 1.44; and bias of 14.4 J g−1, −0.43%, 0.03% and −0.11%, respectively. This report shows that near infrared spectroscopy is quite successful in predicting the higher heating value, and is usable with screening for the determination of fixed carbon and volatile matter. For ash content, the method is not recommended. The models should be able to predict the properties of bamboo samples which are suitable for achieving higher efficiency for the biomass conversion process.


2019 ◽  
Vol 116 ◽  
pp. 00001 ◽  
Author(s):  
Rafat Al Afif ◽  
S. Sean Anayah ◽  
Christoph Pfeifer

The thermal cracking of cotton stalks (CS) via pyrolysis was performed using a laboratory scale batch pyrolysis reactor. The effects of the final pyrolysis temperature varying from 300 to 800°C on the pyrolysis products distribution has been investigated. The maximum biochar yield of 46.5% was obtained at 400°C. As the pyrolysis process temperature increased, the solid char product yield decreased. The lowest biochar yield of 28% was obtained at 800°C. The largest higher heating value (HHV, 25.845 MJ kg-1) was obtained at 600°C. All biochar samples produced between 500 and 700°C had an energy densification ratio of 1.41, indicating a higher mass-energy density than the initial feedstock. A larger share of syngas and bio-oil were produced at higher temperatures, as estimated. Preferential selection of a char based on the energy yield would lead to a selection of the 400°C product, while selection based on the energy densification ratio would be for a product obtained between 500 to 700°C.


2017 ◽  
Vol 757 ◽  
pp. 156-160
Author(s):  
Prodpran Siritheerasas ◽  
Phichayanan Waiyanate ◽  
Hidetoshi Sekiguchi ◽  
Satoshi Kodama

An investigation of the effect of the addition of char from agricultural residues on the torrefaction of moist municipal solid waste (MSW) pellets (40 wt.% moisture) was carried out in a microwave oven (500-800 W for 4-12 minutes). Char from agricultural residues, including corncob, palm shell, straw, and bagasse, was used as the microwave absorbers to enhance the absorption of microwave irradiation. It was found that the addition of char from bagasse yielded the lowest remaining mass (or mass yield) and volatile matter (VM) content, but the highest temperature and heating value, of the torrefied MSW pellet. Moisture in the MSW pellet with or without the addition of microwave absorber was completely removed after being torrefied for 8-12 minutes. The VM contents remained in the MSW pellets with the addition of microwave absorbers were lower than that in the MSW pellet without the addition of microwave absorber. The addition of microwave absorbers led to an increase in carbon (C) content but a decrease in oxygen (O) content of the torrefied MSW pellets, compared to those of the raw MSW pellet. The heating values of the torrefied MSW pellets with the addition of microwave absorbers were equivalent to that of sub-bituminous coal, enhanced from that of the raw MSW pellet, which was lower than that of lignite.


Author(s):  
Muhammad Shahbaz ◽  
Ahmed AlNouss ◽  
Prakash Parthasarathy ◽  
Ali H. Abdelaal ◽  
Hamish Mackey ◽  
...  

Abstract Prior information on the pyrolysis product behaviour of biomass components-cellulose, hemicellulose and lignin is critical in the selection of feedstock as components have a significant influence on the pyrolysis products yield. In this study, the effect of biomass components on the yield of slow pyrolysis products (char, bio-oil and syngas) is investigated using a validated ASPEN Plus® model. The model is simulated at a temperature of 450 °C, a heating rate of 10 °C/min and a solid residence time of 30 min. The results indicated that at the given conditions, lignin contributed 2.4 and 2.5 times more char yield than cellulose and hemicellulose. The hemicellulose contributed 1.33 times more syngas yield than lignin while the cellulose and hemicellulose contributed 8.67 times more bio-oil yield than lignin. Moreover, the cost involved in the production of char using lignin (110 $/ton) is significantly economical than using cellulose (285 $/ton) and hemicellulose (296 $/ton). The net CO2 emission of lignin pyrolysis is 4.14 times lower than cellulose pyrolysis and 3.94 times lower than hemicellulose pyrolysis. It can be concluded that lignin pyrolysis is more advantageous than cellulose and hemicellulose pyrolysis. In the selection of feedstock for the slow pyrolysis, the feedstock with more lignin content is preferred. Graphical abstract


2020 ◽  
Vol 46 (3) ◽  
pp. 160-167
Author(s):  
Made Gunamantha

Organic fraction of municipal solid waste (OFMSW) is the largest fraction of waste generated in Indonesia. This study was meant to examine the theoretical and experimental results for potential energy recovery from OFMSW in Indonesia. Bioconversion and thermochemical approach were used theoretically. The potential energy recoveries were calculated using the empirical relationship between higher heating value (HHV) and the ultimate analysis, stoichiometric, and thermochemistry concept. The HHV and ultimate analysis of OFMSW were determined by ASTM method while the lignin content and volatile solid were adopted from previous studies. The result indicated that the thermochemical approach given the potential energy recovery is higher than others.


Sign in / Sign up

Export Citation Format

Share Document