scholarly journals A comprehensive overview of miRNA targeting drought stress resistance in plants

2023 ◽  
Vol 83 ◽  
Author(s):  
S. M. S. Shah ◽  
F. Ullah

Abstract MicroRNAs (miRNAs) are essential nonprotein-coding genes. In a range of organisms, miRNAs has been reported to play an essential role in regulating gene expressions at post-transcriptional level. They participate in most of the stress responsive processes in plants. Drought is an ultimate abiotic stress that affects the crop production. Therefore understanding drought stress responses are essential to improve the production of agricultural crops. Throughout evolution, plants have developed their own defense systems to cope with the adversities of environmental stresses. Among defensive mechanisms include the regulations of gene expression by miRNAs. Drought stress regulates the expression of some of the functionally conserved miRNAs in different plants. The given properties of miRNAs provide an insight to genetic alterations and enhancing drought resistance in cereal crops. The current review gives a summary to regulatory mechanisms in plants as well as miRNAs response to drought stresses in cereal crops. Some possible approaches and guidelines for the exploitation of drought stress miRNA responses to improve cereal crops are also described.

2020 ◽  
Author(s):  
Min Xu ◽  
Cheng-Li Liu ◽  
Yu Fu ◽  
Zhi-Wen Liao ◽  
Pan-Yang Guo ◽  
...  

Abstract Background: Canker disease caused by Neoscytalidium dimidiatum is a devastating disease resulting in a major loss to the pitaya industry. However, resistance proteins in plants play crucial roles to against pathogen infection. Among resistance proteins, the leucine-rich repeat (LRR) protein is a major family that plays crucial roles in plant growth, development, and biotic and abiotic stress responses, especially in disease defense. Results: In the present study, a transcriptomics analysis identified a total of 272 LRR genes, 233 of which had coding sequences (CDSs), in the plant pitaya ( Hylocereus polyrhizus ) in response to fungal Neoscytalidium dimidiatum infection. These genes were divided into various subgroups based on specific domains and phylogenetic analysis. Molecular characterization, functional annotation of proteins, and an expression analysis of the LRR genes were conducted. Additionally, four LRR genes (CL445.Contig4_All, Unigene28_All, CL28.Contig2_All, and Unigene2712_All, which were selected because they had the four longest CDSs were further assessed using quantitative reverse transcription PCR (qRT-PCR) at different fungal infection stages in different pitaya species ( Hylocereus polyrhizus and Hylocereus undatus ), in different pitaya tissues, and after treatment with salicylic acid (SA), methyl jasmonate (MeJA), and abscisic acid (ABA) hormones. The associated protein functions and roles in signaling pathways were identified. Conclusions: This study provides a comprehensive overview of the Hp LRR family genes at transcriptional level in pitaya in response to N. dimidiatum infection, it will be helpful to understand the molecular mechanism of pitaya canker disease, and lay a strong foundation for further research.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiajia Chen ◽  
Yuqing Zhong ◽  
Xin Qi

Abstract Background Water deficit is an abiotic stress that retards plant growth and destabilizes crop production. Long non coding RNAs (lncRNAs) are a class of non-coding endogenous RNAs that participate in diverse cellular processes and stress responses in plants. lncRNAs could function as competing endogenous RNAs (ceRNA) and represent a novel layer of gene regulation. However, the regulatory mechanism of lncRNAs as ceRNA in drought stress response is yet unclear. Results In this study, we performed transcriptome-wide identification of drought-responsive lncRNAs in rice. Thereafter, we constructed a lncRNA-mediated ceRNA network by analyzing competing relationships between mRNAs and lncRNAs based on ceRNA hypothesis. A drought responsive ceRNA network with 40 lncRNAs, 23 miRNAs and 103 mRNAs was obtained. Network analysis revealed TCONS_00021861/miR528-3p/YUCCA7 regulatory axis as a hub involved in drought response. The miRNA-target expression and interaction were validated by RT-qPCR and RLM-5’RACE. TCONS_00021861 showed significant positive correlation (r = 0.7102) with YUCCA7 and negative correlation with miR528-3p (r = -0.7483). Overexpression of TCONS_00021861 attenuated the repression of miR528-3p on YUCCA7, leading to increased IAA (Indole-3-acetic acid) content and auxin overproduction phenotypes. Conclusions TCONS_00021861 could regulate YUCCA7 by sponging miR528-3p, which in turn activates IAA biosynthetic pathway and confer resistance to drought stress. Our findings provide a new perspective of the regulatory roles of lncRNAs as ceRNAs in drought resistance of rice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sang-Uk Lee ◽  
Bong-Gyu Mun ◽  
Eun-Kyung Bae ◽  
Jae-Young Kim ◽  
Hyun-Ho Kim ◽  
...  

Populus trichocarpa has been studied as a model poplar species through biomolecular approaches and was the first tree species to be genome sequenced. In this study, we employed a high throughput RNA-sequencing (RNA-seq) mediated leaf transcriptome analysis to investigate the response of four different Populus davidiana cultivars to drought stress. Following the RNA-seq, we compared the transcriptome profiles and identified two differentially expressed genes (DEGs) with contrasting expression patterns in the drought-sensitive and tolerant groups, i.e., upregulated in the drought-tolerant P. davidiana groups but downregulated in the sensitive group. Both these genes encode a 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme required for abscisic acid (ABA) biosynthesis. The high-performance liquid chromatography (HPLC) measurements showed a significantly higher ABA accumulation in the cultivars of the drought-tolerant group following dehydration. The Arabidopsis nced3 loss-of-function mutants showed a significantly higher sensitivity to drought stress, ~90% of these plants died after 9 days of drought stress treatment. The real-time PCR analysis of several key genes indicated a strict regulation of drought stress at the transcriptional level in the P. davidiana drought-tolerant cultivars. The transgenic P. davidiana NCED3 overexpressing (OE) plants were significantly more tolerant to drought stress as compared with the NCED knock-down RNA interference (RNAi) lines. Further, the NCED OE plants accumulated a significantly higher quantity of ABA and exhibited strict regulation of drought stress at the transcriptional level. Furthermore, we identified several key differences in the amino acid sequence, predicted structure, and co-factor/ligand binding activity of NCED3 between drought-tolerant and susceptible P. davidiana cultivars. Here, we presented the first evidence of the significant role of NCED genes in regulating ABA-dependent drought stress responses in the forest tree P. davidiana and uncovered the molecular basis of NCED3 evolution associated with increased drought tolerance.


2020 ◽  
Author(s):  
Min Xu ◽  
Cheng-Li Liu ◽  
Yu Fu ◽  
Zhi-Wen Liao ◽  
Pan-Yang Guo ◽  
...  

Abstract Background: Canker disease caused by Neoscytalidium dimidiatum is a devastating disease resulting in a major loss to the pitaya industry. However, resistance proteins in plants play crucial roles to against pathogen infection. Among resistance proteins, the leucine-rich repeat (LRR) protein is a major family that plays crucial roles in plant growth, development, and biotic and abiotic stress responses, especially in disease defense. Results: In the present study, a transcriptomics analysis identified a total of 272 LRR genes, 233 of which had coding sequences (CDSs), in the plant pitaya ( Hylocereus polyrhizus ) in response to fungal Neoscytalidium dimidiatum infection. These genes were divided into various subgroups based on specific domains and phylogenetic analysis. Molecular characterization, functional annotation of proteins, and an expression analysis of the LRR genes were conducted. Additionally, four LRR genes (CL445.Contig4_All, Unigene28_All, CL28.Contig2_All, and Unigene2712_All, which were selected because they had the four longest CDSs were further assessed using quantitative reverse transcription PCR (qRT-PCR) at different fungal infection stages in different pitaya species ( Hylocereus polyrhizus and Hylocereus undatus ), in different pitaya tissues, and after treatment with salicylic acid (SA), methyl jasmonate (MeJA), and abscisic acid (ABA) hormones. The associated protein functions and roles in signaling pathways were identified. Conclusions: This study provides a comprehensive overview of the Hp LRR family genes at transcriptional level in pitaya in response to N. dimidiatum infection, it will be helpful to understand the molecular mechanism of pitaya canker disease, and lay a strong foundation for further research.


2019 ◽  
Author(s):  
Min Xu ◽  
Cheng-Li Liu ◽  
Yu Fu ◽  
Zhi-Wen Liao ◽  
Pan-Yang Guo ◽  
...  

Abstract Background:Canker disease caused by Neoscytalidium dimidiatumis a devastating disease resulting in a major loss to the pitaya industry. However, resistance proteins in plants play crucial roles to against pathogen infection. Among resistance proteins, the leucine-rich repeat (LRR) protein is a major family that plays crucial roles in plant growth, development, and biotic and abiotic stress responses, especially in disease defense. Results: In the present study, a transcriptomics analysis identified a total of 272 LRR genes, 233 of which had coding sequences (CDSs), in the plant pitaya (Hylocereus polyrhizus) in response to fungal Neoscytalidium dimidiatuminfection. These genes were divided into various subgroups based on specific domains and phylogenetic analysis. Molecular characterization, functional annotation of proteins, and an expression analysis of the LRR genes were conducted. Additionally, four LRR genes (CL445.Contig4_All, Unigene28_All, CL28.Contig2_All, and Unigene2712_All, which were selected because they had the four longest CDSs were further assessed using quantitative reverse transcription PCR (qRT-PCR) at different fungal infection stages in different pitaya species (Hylocereus polyrhizus and Hylocereus undatus), in different pitaya tissues, and after treatment with salicylic acid (SA), methyl jasmonate (MeJA), and abscisic acid(ABA) hormones. The associated protein functions and roles in signaling pathways were identified. Conclusions: This study provides a comprehensive overview of the HpLRR family genes at transcriptional level in pitaya in response toN. dimidiatuminfection, it will be helpful to understand the molecular mechanism of pitaya canker disease, and lay a strong foundation for further research.


2021 ◽  
Author(s):  
Yukari Nagatoshi ◽  
Kenta Ikazaki ◽  
Nobuyuki Mizuno ◽  
Yasufumi Kobayashi ◽  
Kenichiro Fujii ◽  
...  

Drought severely damages crop production, even under conditions so mild that the leaves show no signs of wilting. As effective methods for analyzing the field drought response have not been established, it is unclear how field-grown plants respond to mild drought. We show that ridges are a useful experimental tool to mimic mild drought stress in the field. Mild drought reduces inorganic phosphate levels in the leaves to activate the phosphate starvation response (PSR) in field-grown soybean plants. PSR-related gene expression is mainly observed under drought conditions that are too mild to activate abscisic acid-mediated gene expression. Thus, our study provides insights into the molecular response to mild drought in field-grown plants and into the link between nutritional and drought stress responses in plants.


2019 ◽  
Author(s):  
Min Xu ◽  
Cheng-Li Liu ◽  
Yu Fu ◽  
Zhi-Wen Liao ◽  
Pan-Yang Guo ◽  
...  

Abstract Background: Canker disease caused by Neoscytalidium dimidiatum is a devastating disease resulting in a major loss to the pitaya industry. However, resistance proteins in plants play crucial roles to against pathogen infection. Among resistance proteins, the leucine-rich repeat (LRR) proteins are a major family that play crucial roles in plant growth, development, and biotic and abiotic stress responses, especially in disease defence. Results: In the present study, a transcriptomics analysis identified a total of 272 LRR genes, 233 of which had coding sequences (CDSs), in the plant pitaya ( Hylocereus polyrhizus )in response to fungal Neoscytalidium dimidiatum infection. These genes were divided into various subgroups based on specific domains and phylogenetic analysis. Molecular characterization, functional annotation of proteins, and an expression analysis of the LRR genes were conducted. Additionally, four LRR genes (CL445.Contig4_All, Unigene28_All, CL28.Contig2_All, and Unigene2712_All, which were selected because they had the four longest CDSs were further assessed using quantitative reverse transcription PCR (qRT-PCR) at different fungal infection stages in different pitaya species ( Hylocereus polyrhizus and Hylocereus undatus ), in different pitaya tissues, and after treatment with salicylic acid (SA), methyl jasmonate (MeJA), and abscisic acid (ABA) hormones. The associated protein functions and roles in signaling pathways were identified. Conclusions: This study provides a comprehensive overview of the Hp LRR family genes at transcriptional level in pitaya in response to N. dimidiatum infection and provides a basis for further in-depth functional studies.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1534
Author(s):  
Chandra Mohan Singh ◽  
Poornima Singh ◽  
Chandrakant Tiwari ◽  
Shalini Purwar ◽  
Mukul Kumar ◽  
...  

Drought stress is considered a severe threat to crop production. It adversely affects the morpho-physiological, biochemical and molecular functions of the plants, especially in short duration crops like mungbean. In the past few decades, significant progress has been made towards enhancing climate resilience in legumes through classical and next-generation breeding coupled with omics approaches. Various defence mechanisms have been reported as key players in crop adaptation to drought stress. Many researchers have identified potential donors, QTLs/genes and candidate genes associated to drought tolerance-related traits. However, cloning and exploitation of these loci/gene(s) in breeding programmes are still limited. To bridge the gap between theoretical research and practical breeding, we need to reveal the omics-assisted genetic variations associated with drought tolerance in mungbean to tackle this stress. Furthermore, the use of wild relatives in breeding programmes for drought tolerance is also limited and needs to be focused. Even after six years of decoding the whole genome sequence of mungbean, the genome-wide characterization and expression of various gene families and transcriptional factors are still lacking. Due to the complex nature of drought tolerance, it also requires integrating high throughput multi-omics approaches to increase breeding efficiency and genomic selection for rapid genetic gains to develop drought-tolerant mungbean cultivars. This review highlights the impact of drought stress on mungbean and mitigation strategies for breeding high-yielding drought-tolerant mungbean varieties through classical and modern omics technologies.


Sign in / Sign up

Export Citation Format

Share Document