scholarly journals Production of proline and protease with different organic wastes in bacteria (Production proline and protease with organic wastes)

2022 ◽  
Vol 82 ◽  
Author(s):  
H. Kahraman ◽  
C. C. Karaderi

Abstract In this study, we investigated the proline and protease production of different bacteria in several organic waste materials. Our aim was to produce proline and protease economically in waste that is abundantly available while reducing its environmental impact. 5 ml of different organic waste materials (OWW: Olive waste water; N.B: Nutrient Broth; EW: Eggshell; PBS: PBS buffer; PLW: Peach leaf wastes; TCW: Turkish coffee wastes; TWW: Tea waste water; WCW: Waste cheese whey; WFO: Waste frying oil) were placed in 10 ml grow tubes, inoculated and incubated for 24 h. Phosphate-buffered saline and 10% solutions of different organic wastes were added. These cultures were subsequently incubated at 37°C for 24 h. Cells were harvested at 24 h for L-proline assay. 1 ml of culture was transferred by pipette into an Eppendorf tube and centrifuged at 14,000 rpm for 20 min at room temperature. Cellular debris was removed by centrifuge and the supernatant was used for proline activity assays. Protease activity was determined using a modified method with casein as the substrate. We found that proline and protease can easily be produced economically using Turkish coffee wastes (TCW), Waste cheese whey (WCW) and Olive waste water (OWW) organic waste. We believe that this study will result in similar research leading to the economical use of these waste materials thus reducing their impact on the environment.

2020 ◽  
Author(s):  
Hüseyin Kahraman ◽  
Cennet Canan Karaderi

Abstract Background: In this study, we investigated the proline and protease production of different bacteria in several organic waste materials. Our aim was to produce proline and protease economically in waste that is abundantly available while reducing its environmental impact. Methods: 5 ml of different organic waste materials were placed in 10 ml grow tubes, inoculated and incubated for 24 h. Phosphate-buffered saline and 10% solutions of different organic wastes were added. These cultures were subsequently incubated at 37°C for 24 h. Cells were harvested at 24 h for L-proline assay. 1 ml of culture was transferred by pipette into an Eppendorf tube and centrifuged at at room temperature. Cellular debris was removed by centrifuge and the supernatant was used for proline activity assays. Results: Protease activity was determined using a modified method with casein as the substrate. We found that proline and protease can easily be produced economically using TCW, WCW and OWW organic waste. Conclusion: We believe that this study will result in similar research leading to the economical use of these waste materials thus reducing their impact on the environment.


2021 ◽  
Vol 218 ◽  
pp. 252-259
Author(s):  
Jacek Piekarski ◽  
Tomasz Dąbrowski ◽  
Katarzyna Ignatowicz

2020 ◽  
Vol 3 (4) ◽  
pp. 76
Author(s):  
Md Maruf Mortula ◽  
Aqeel Ahmed ◽  
Kazi Parvez Fattah ◽  
Ghina Zannerni ◽  
Syed A. Shah ◽  
...  

Daily human activities and vast green areas produce substantial amounts of organic wastes that end up in landfills with minimal treatment. In addition to the problems associated with landfills, disposal through this method is unsustainable in the long run and does not allow recovering materials from the waste. This paper focuses on the co-composting of different organic wastes produced in The Emirate of Sharjah, United Arab Emirates (UAE), to optimize mixing proportions of three different kinds of wastes—sewage sludge (SS), green waste (GW), and food waste (FW). All three organic wastes were analyzed to determine their chemical composition and the mixing proportions. Ten different mixing proportions as a function of carbon:nitrogen (C:N ratios) were determined and mixed in a NatureMill composter. Compost samples were tested for pH, salinity, conductivity, moisture content, organic matter, organic carbon, phosphorus, total nitrogen, and final C:N ratio after 6 weeks. Results indicate that a period of 5–6 weeks is sufficient for the compost to stabilize. The varying mixing proportions produced a good-quality compost (C:N up to 20:1) with high nutrient content. The study reaffirms that co-composting can be a potential sustainable organic waste management option for the United Arab Emirates.


Author(s):  
BU Bagudo ◽  
SM Dangoggo ◽  
LG Hassan ◽  
B Garba

2013 ◽  
Vol 34 (20) ◽  
pp. 2859-2866 ◽  
Author(s):  
E. W. Chai ◽  
P. S. H'ng ◽  
S. H. Peng ◽  
W. M. Wan-Azha ◽  
K. L. Chin ◽  
...  

2009 ◽  
Vol 81 (8) ◽  
pp. 1441-1448 ◽  
Author(s):  
Panagiotis Lianos ◽  
Nikoleta Strataki ◽  
Maria Antoniadou

Commercial nanocrystalline titania (titanium dioxide, TiO2) has been used to make TiO2 films, which were employed to photodegrade several organic substances under photocatalytic (PC) or photoelectrochemical (PEC) operation. Hydrogen was produced during both operations while electricity was additionally produced during the PEC operation. Both processes were studied as typical examples of the current trend in the effort to produce useful forms of energy by photodegradation of organic waste materials.


2012 ◽  
Vol 32 (2) ◽  
pp. 405-414 ◽  
Author(s):  
Adriane de A. Silva ◽  
Adriana M. da Costa ◽  
Regina M. Q. Lana ◽  
Ângela M. Q. Lana

The utilization of organic wastes represents an alternative to recover degraded pasture. The experiment aimed to assess the changes caused by the provision of different organic waste (poultry litter, turkey litter and pig manure) in a medium-textured Oxisol in Brazilian Savanna under degraded pasture. It was applied different doses of waste compared to the use of mineral fertilizers and organic mineral and evaluated the effect on soil parameters (pH, organic matter, phosphorus and potassium) and leaf of Brachiariadecumbens (crude protein, phosphorus and dry mass production). It was observed that application of organic waste did not increase the level of soil organic matter and pH in the surface layer, and the application of turkey litter caused acidification at depths of 0.20-0.40 m and 0.40-0.60 m. There was an increase in P and K in the soil with the application of poultry litter and swine manure. All organic wastes increased the productivity of dry matter and crude protein and phosphorus. The recycling of nutrients via the application of organic waste allows efficiency of most parameters similar to those observed with the use of mineral sources, contributing to improving the nutritional status of soil-plantsystem.


2016 ◽  
Vol 23 (1) ◽  
pp. 99-115 ◽  
Author(s):  
Agnieszka A. Pilarska ◽  
Krzysztof Pilarski ◽  
Kamil Witaszek ◽  
Hanna Waliszewska ◽  
Magdalena Zborowska ◽  
...  

Abstract The results of anaerobic digestion (AD) of buttermilk (BM) and cheese whey (CW) with a digested sewage sludge as inoculum is described. The substrate/inoculum mixtures were prepared using 10% buttermilk and 15% cheese whey. The essential parameters of the materials were described, including: total solids (TS), volatile solids (VS), pH, conductivity, C/N ratio (the quantitative ratio of organic carbon (C) to nitrogen (N)), alkalinity, chemical oxygen demand (COD). The potential directions of biodegradation of the organic waste types, as used in this study, are also presented. Appropriate chemical reactions illustrate the substrates and products in each phase of anaerobic decomposition of the compounds that are present in buttermilk and cheese whey: lactic acid, lactose, fat, and casein. Moreover, the biogas and biomethane production rates are compared for the substrates used in the experiment. The results have shown that buttermilk in AD generates more biogas (743 m3/Mg VS), including methane (527 m3/Mg VS), when compared with cheese whey (600 m3/Mg VS, 338 m3/Mg VS for biogas and methane, respectively).


Sign in / Sign up

Export Citation Format

Share Document