scholarly journals Effects of neutrophil extracellular traps during human respiratory syncytial virus infection in vitro

2023 ◽  
Vol 83 ◽  
Author(s):  
L.F.A. Diniz ◽  
B.K. Matsuba ◽  
P.S.S. Souza ◽  
B.R.P. Lopes ◽  
L.H. Kubo ◽  
...  

Abstract The human respiratory syncytial virus (hRSV) is the most common cause of severe lower respiratory tract diseases in young children worldwide, leading to a high number of hospitalizations and significant expenditures for health systems. Neutrophils are massively recruited to the lung tissue of patients with acute respiratory diseases. At the infection site, they release neutrophil extracellular traps (NETs) that can capture and/or inactivate different types of microorganisms, including viruses. Evidence has shown that the accumulation of NETs results in direct cytotoxic effects on endothelial and epithelial cells. Neutrophils stimulated by the hRSV-F protein generate NETs that are able to capture hRSV particles, thus reducing their transmission. However, the massive production of NETs obstructs the airways and increases disease severity. Therefore, further knowledge about the effects of NETs during hRSV infections is essential for the development of new specific and effective treatments. This study evaluated the effects of NETs on the previous or posterior contact with hRSV-infected Hep-2 cells. Hep-2 cells were infected with different hRSV multiplicity of infection (MOI 0.5 or 1.0), either before or after incubation with NETs (0.5–16 μg/mL). Infected and untreated cells showed decreased cellular viability and intense staining with trypan blue, which was accompanied by the formation of many large syncytia. Previous contact between NETs and cells did not result in a protective effect. Cells in monolayers showed a reduced number and area of syncytia, but cell death was similar in infected and non-treated cells. The addition of NETs to infected tissues maintained a similar virus-induced cell death rate and an increased syncytial area, indicating cytotoxic and deleterious damages. Our results corroborate previously reported findings that NETs contribute to the immunopathology developed by patients infected with hRSV.

2018 ◽  
Vol 251 ◽  
pp. 68-77 ◽  
Author(s):  
Priscila Silva Sampaio Souza ◽  
Lia Vezenfard Barbosa ◽  
Larissa Figueiredo Alves Diniz ◽  
Gabriel Soares da Silva ◽  
Bruno Rafael Pereira Lopes ◽  
...  

2021 ◽  
Author(s):  
Li-Nan Wang ◽  
Xiang-Lei Peng ◽  
Min Xu ◽  
Yuan-Bo Zheng ◽  
Yue-Ying Jiao ◽  
...  

AbstractHuman respiratory syncytial virus (RSV) infection is the leading cause of lower respiratory tract illness (LRTI), and no vaccine against LRTI has proven to be safe and effective in infants. Our study assessed attenuated recombinant RSVs as vaccine candidates to prevent RSV infection in mice. The constructed recombinant plasmids harbored (5′ to 3′) a T7 promoter, hammerhead ribozyme, RSV Long strain antigenomic cDNA with cold-passaged (cp) mutations or cp combined with temperature-sensitive attenuated mutations from the A2 strain (A2cpts) or further combined with SH gene deletion (A2cptsΔSH), HDV ribozyme (δ), and a T7 terminator. These vectors were subsequently co-transfected with four helper plasmids encoding N, P, L, and M2-1 viral proteins into BHK/T7-9 cells, and the recovered viruses were then passaged in Vero cells. The rescued recombinant RSVs (rRSVs) were named rRSV-Long/A2cp, rRSV-Long/A2cpts, and rRSV-Long/A2cptsΔSH, respectively, and stably passaged in vitro, without reversion to wild type (wt) at sites containing introduced mutations or deletion. Although rRSV-Long/A2cpts and rRSV-Long/A2cptsΔSH displayed  temperature-sensitive (ts) phenotype in vitro and in vivo, all rRSVs were significantly attenuated in vivo. Furthermore, BALB/c mice immunized with rRSVs produced Th1-biased immune response, resisted wtRSV infection, and were free from enhanced respiratory disease. We showed that the combination of ΔSH with attenuation (att) mutations of cpts contributed to improving att phenotype, efficacy, and gene stability of rRSV. By successfully introducing att mutations and SH gene deletion into the RSV Long parent and producing three rRSV strains, we have laid an important foundation for the development of RSV live attenuated vaccines.


2017 ◽  
Vol 30 (8) ◽  
pp. 576-581 ◽  
Author(s):  
Vesla I. Kullaya ◽  
Quirijn de Mast ◽  
Andre van der Ven ◽  
Hicham elMoussaoui ◽  
Gibson Kibiki ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1176
Author(s):  
Patricia G. de la Sota ◽  
Elena Lorente ◽  
Laura Notario ◽  
Carmen Mir ◽  
Oscar Zaragoza ◽  
...  

Human respiratory syncytial virus (HRSV) is the most common cause of severe respiratory infections in infants and young children, often leading to hospitalization. In addition, this virus poses a serious health risk in immunocompromised individuals and the elderly. HRSV is also a major nosocomial hazard in healthcare service units for patients of all ages. Therefore, the development of antiviral treatments against HRSV is a global health priority. In this study, mitoxantrone, a synthetic anthraquinone with previously reported in vitro antiprotozoal and antiviral activities, inhibits HRSV replication in vitro, but not in vivo in a mice model. These results have implications for preclinical studies of some drug candidates.


2020 ◽  
Vol 276 ◽  
pp. 197805 ◽  
Author(s):  
Bruno Rafael Pereira Lopes ◽  
Mirian Feliciano da Costa ◽  
Amanda Genova Ribeiro ◽  
Tiago Francisco da Silva ◽  
Caroline Sprengel Lima ◽  
...  

1995 ◽  
Vol 268 (6) ◽  
pp. L1006-L1011 ◽  
Author(s):  
G. N. Colasurdo ◽  
V. G. Hemming ◽  
G. A. Prince ◽  
J. E. Loader ◽  
J. P. Graves ◽  
...  

A dysfunction of the nonadrenergic noncholinergic inhibitory (NANCi) system has been invoked as a possible mechanism underlying or contributing to altered airway function. In the present study we assessed whether human respiratory syncytial virus (HRSV) infection affects the airways' neurally mediated contractile and relaxant (NANCi) responses in vitro. NANCi responses were studied on tracheal smooth muscle (TSM) segments obtained from young adult cotton rats, a well-established model for HRSV infection. To assess NANCi responses, TSM segments were removed and placed in tissue baths containing modified Krebs-Henseleit, atropine (1 x 10(-6) M) and propranolol (5 x 10(-6) M). After contraction with neurokinin A (1 x 10(-5) M), electrical field stimulation (EFS) was applied at stimulation frequencies ranging from 5 to 30 Hz. The NANCi responses were measured and expressed as the mean (+/- SE) percent relaxation. To evaluate neurally mediated contractile responses, full frequency response curves (0.5-30 Hz) to EFS were also performed. We found significantly decreased NANCi responses in TSM segments obtained from infected cotton rats (n = 12) compared with control animals (n = 9) (P < 0.002). Furthermore, the contractile responses to EFS were increased in infected animals compared with the control group (P = 0.0001). These findings demonstrate that HRSV infection leads to an enhanced contractile response to EFS and a significant decrease in NANCi response in cotton rat airways in vitro. This disruption of the neural control of airways may lead to the development of altered airway function.


Sign in / Sign up

Export Citation Format

Share Document