scholarly journals Diversity of the Anisoptera & Zygoptera (Odonata: Insecta) of Swat, Pakistan

2023 ◽  
Vol 83 ◽  
Author(s):  
M. Attaullah ◽  
I. Ullah ◽  
M. Ali ◽  
F. Maula ◽  
I. Ilahi ◽  
...  

Abstract Odonates are important biological control agents for the control of insect pests and insect disease vectors of medical and veterinary importance. The present study was conducted to evaluate the odonate fauna of Swat, Pakistan from March to October 2019. A total of 200 specimens of odonates were collected from diverse habitats. The collected specimens of the order Odonata belonged to 5 families, three families of suborder Anisoptera namely Libellulidae, Gomphidae and Aeshnidae while two families of suborder Zygoptera (Chlorocyphidae and Coenagrionidae). The specimens were categorized into 12 genera and 22 species. Libellulidae was the dominant family (n = 138) accounting for 69% of the odonate fauna. Orthetrum was the dominant genus (n = 73) of suborder Anisoptera accounting for 36.5% of the odonate fauna. The least dominant genera were Anax, Paragomphus and Rhyothemis (n = 5 each) accounting each for 2.5% of the odonate fauna. In Zygoptera, the dominant genus was Ceriagrion (12.5%) and the least dominant genus was Ischnura (6%). Pantala flavescens (Fabricius, 1798) was the most abundant odonate species in the study area recorded from all surveyed habitats. Shannon Diversity Index (H) was 2.988 and Simpson Diversity Index (D) was 0.95 for the collected odonate fauna. The highest abundance of Odonata was recorded in August, September and May while no odonate species were recorded in January, February, November and December. Lotic water bodies were the most suitable habitats with abundant odonate fauna. Anax immaculifrons (Rambur, 1842) was the largest sized odonate species having a wingspan of 53.2±1.63 mm and body length of 56.3 ± 0.4 mm. The present study shows the status of odonate fauna of Swat, Pakistan in diverse habitats and seasonsonal variation throughout the year. Further work is recommended to bridge the gaps in the existing literature.

2021 ◽  
Vol 2 (2) ◽  
pp. 121-125
Author(s):  
Erniwati Erniwati ◽  
◽  
Tiara Sayusti ◽  
Woro Anggraitoningsih Noerdjito ◽  
◽  
...  

Plectranthus rotundifolius is an edible tuber that widely distributed in Asia, covers India, Sri Lanka, Malaysia, and Indonesia. Plectranthus rotundifolius which commonly called as black potato in Indonesia is potential to be developed for national food diversification due to its high carbohydrates. However, one of challenges in black potato culture is the existence of moth pest infected the plants. This study was aimed to evaluate the status of Paliga auratalis moth as an insect pest in black potato plant and to develop the countermeasure strategy through its natural enemies. Observation and collection of P. auratalis and other potential insect pests was conducted in 12 black potato plantations located in five provinces of Java Island. The life cycle of P. auratalis was observed in the laboratory of Zoology Division, Research Center for Biology, Indonesian Institute of Science. Rearing of unhealthy P. auratalis larvae was also conducted to observe its natural enemies. We identified five species of moths infested black potato plants i.e.: Argyrograma sp., Pycnarmon cribat, Pleuroptya punctimarginalis, Rehimena diemenalis, and Paliga auratalis. Based on our observation, we confirmed that. P. auratalis is the main insect pest in Java Island with serious stack status. P. auratalis spend its lifecycle from eggs to adult between 25 – 32 days with the total eggs about 60-80 per female individual. We also identified two parasitic wasps as the natural enemies of P.auratalis i.e.: Aspanteles sp. and Cryptopimpla sp. which are potential to be a biological control agents of P. auratalis.


Entomophaga ◽  
1995 ◽  
Vol 40 (3-4) ◽  
pp. 427-440 ◽  
Author(s):  
S. R. Ripa ◽  
P. S. Rojas ◽  
G. Velasco

1956 ◽  
Vol 88 (9) ◽  
pp. 553-563 ◽  
Author(s):  
F. J. Simmonds

In a recent paper Taylor (1955) has discussed the status of biological control with particular reference to its present and future value as a method of control of insect pests. A number of his remarks are questionable, and his conclusions that present methods of biological control are of little value are not valid. His broad thesis is that insect pests with which the biological control method is effective have already been satisfactorily dealt with and that there no longer remain problems where spectacular results may be expected: moreover, that with the modern insecticides available, biological control has in many cases been rendered useless. It would be as well therefore to examine carefully his main contentions, and it should be pointed out at the outset that Taylor's criticisms of the methods of biological control, and of the claims made by entomologists working in this field, are vague, and although he does not actually say so he insinuates that biological control workers make or have made unjustified claims as to the success of a number of projects undertaken.


Parasitology ◽  
1982 ◽  
Vol 84 (4) ◽  
pp. 241-268 ◽  
Author(s):  
J. K. Waage ◽  
M. P. Hassell

SUMMARYThis review begins with a description of the parasitoid life-style and the ecological and evolutionary factors which generate the remarkable diversity of insect parasitoids. We then describe the various ways that parasitoids have been used in the biological control of insect pests, and survey their success to date. The use of parasitoids remains largely an art, aided by past experience of success and failure. A more fundamental approach, involving basic research and theory, has not as yet contributed significantly to practical biological control. We explore the potential for such a science of parasitoid use and review basic research on parasitoid ecology and evolution which is of particular relevance to biological control. Mathematical models are used to identify and examine those parasitoid and host attributes which lead to successful biological control. Factors such as parasitoid foraging behaviour, fecundity, larval survival and sex ratio are shown to be important in influencing the depression of host populations and/or the stability of host–parasitoid interactions after depression. Multiple release is discussed and a model for inundative release of parasitoids is explored.


ZooKeys ◽  
2021 ◽  
Vol 1046 ◽  
pp. 177-187
Author(s):  
Paulina Nava-Ruiz ◽  
Ricardo Meraz-Álvarez ◽  
Jorge Valdez-Carrasco ◽  
Onésimo Chávez-López ◽  
Néstor Bautista-Martínez

Among the insect pests that affect crucifer crops in Mexico are Delia planipalpis (Meigen) and D. platura (Stein). They are a threat to the production of these vegetables since the damage they cause directly and indirectly affects yield, quality, and commercialization of these crops. Nevertheless, the existence of natural enemies of these dipterans is still unknown. It is fundamental to determine which parasitoids or predators can be considered possible biological control agents in an integrated pest management program. The sampling sites were located in Guanajuato, Puebla, and the State of Mexico, where plants of Brassica oleracea L. var. italica Plenk and capitata L., B. napus L., and Raphanus sativus L. infested with Delia spp. were selected. The symptoms observed were wilting, yellowish, flaccid leaves and individuals less developed than the rest of the crop. These plants were extracted with their root and the surrounding soil. Also, wild crucifers were collected, such as Raphanus raphanistrum L., Brassica campestris L., and Sisymbrium irio L. The first records of Aphaereta pallipes Say (Hymenoptera, Braconidae), Trybliographa rapae (Westwood) (Hymenoptera, Figitidae), and Aleochara bimaculata Gravenhorst (Coleoptera, Staphylinidae) are reported parasitizing the puparia of these anthomyiid flies on cultivated and wild crucifers. This represents only a starting point for the continuous study of these parasitoids, which is needed to consider them useful for the biological control of D. planipalpis and D. platura.


2018 ◽  
Vol 10 ◽  
pp. 117954331875749 ◽  
Author(s):  
Maria Luisa Dindo ◽  
Satoshi Nakamura

Oviposition strategies and mechanisms of host selection in parasitoids may be crucial for the success of parasitization and parasitoid production. These aspects are far less known in tachinid parasitoids than in hymenopteran parasitoids. Depending on the species, parasitoid flies may adopt direct or indirect oviposition strategies. The ‘direct type’ females lay eggs on or, in relatively a few species, inside the host body. This review describes cues involved in host selection by tachinid parasitoids and their oviposition strategies and presents 2 case studies in more detail, focusing on Exorista larvarum and Exorista japonica. These 2 polyphagous parasitoids of Lepidoptera lay macrotype eggs directly on the host cuticle. Both species have been used as biological control agents in inoculative release against the gypsy moth Lymantria dispar in the Northern United States. Improved knowledge of the mechanisms involved in host selection and oviposition strategies may increase the possibility of eliciting oviposition by these tachinids on target lepidopterous hosts (and even artificial substrates), thus facilitating their rearing and ultimately making their exploitation as regulators of target insect pests more feasible and efficient.


Sign in / Sign up

Export Citation Format

Share Document