scholarly journals Optimized biotransformation of acid-treated water melon peel hydrolyzate into ethanol

2023 ◽  
Vol 83 ◽  
Author(s):  
A. Chaudhary ◽  
A. M. Akram ◽  
Qurat-ul-Ain Ahmad ◽  
Z. Hussain ◽  
S. Zahra ◽  
...  

Abstract Today, global focus of research is to explore the solution of energy crisis and environmental pollution. Like other agricultural countries, bulk quantities of watermelon peels (WMP) are disposed-off in environment as waste in Pakistan and appropriate management of this waste is the need of hour to save environment from pollution. The work emphasizes the role of ethanologenic yeasts to utilize significant sugars present in WMP for low-cost bioethanol fermentation. Dilute hydrochloric acid hydrolysis of WMP was carried out on optimized conditions employing RSM (response surface methodology) following central composite design (CCD). This experimental design is based on optimization of ethanologenesis involving some key independent parameters such as WMP hydrolysate and synthetic media ratio (X1), incubation temperature (X2) and incubation temperature (X3) for maximal ethanol yield exploiting standard (Saccharomyces cerevisiae K7) as well as experimental (Metchnikowia cibodasensisY34) yeasts. The results revealed that maximal ethanol yields obtained from S. cerevisiae K7 was 0.36±0.02 g/g of reducing sugars whereas M. cibodasensisY34, yielded 0.40±0.01 g ethanol/g of reducing sugars. The yeast isolate M. cibodasensisY34 appeared as promising ethanologen and embodies prospective potential for fermentative valorization of WMP-to-bioethanol.

2015 ◽  
Vol 17 (4) ◽  
pp. 816-824

<div> <p>The main objective of this study was to evaluate the hydrolysis of rice hulls to obtain reducing sugars by conventional and ultrasound-assisted acid hydrolysis. For this purpose, the methodology of experimental design was used to evaluating the influence of temperature, moisture content and concentration of phosphoric acid on the yield of reducing sugars. The yields at optimized conditions were of 141.1 and 162.0 g.kg<sup>-1</sup>, for conventional and ultrasound-assisted hydrolysis, respectively. It was possible to obtain high yield using less acid and low temperature, in a manner that ultrasound can be used as a technology for process intensification.&nbsp;</p> </div> <p>&nbsp;</p>


2020 ◽  
Vol 39 (2) ◽  
pp. 198-212
Author(s):  
Kando Janga ◽  
Nils Dyrset ◽  
Karin Øyaas ◽  
Størker Moe

The fermentability of hydrolyzates derived from two-stage concentrated sulfuric acid hydrolysis of Trembling aspen (Populus tremula) and Scots pine (Pinus sylvestris) were investigated. Three types of hydrolyzates were produced at mild, moderate and high decrystallization severity conditions. Portions of each of the original hydrolyzates were concentrated by vacuum evaporation to increase the sugar fraction to simulate industrial applications. Both sets of hydrolyzates were fermented anaerobically using Saccharomyces cerevisiae ATCC 96581. After 23 hours of fermentation, complete glucose consumption was observed for all the original hydrolyzates, with no signs of inhibition. The ethanol yields from these hydrolyzates ranged from 68% to 90% of theoretical value. Fermentation of concentrated aspen hydrolyzates produced at mild or moderate decrystallization severity showed a significant lag phase, associated with relatively high furfural content in the samples (approximately 2 g/L). No lag phase was apparent for aspen produced at high decrystallization severity or pine hydrolyzates. However, furfural had no adverse effect on the maximum ethanol yield. No inhibitory effect of HMF, acetic acid, formic acid or levulinic acid was detected in the concentrated hydrolyzates due to the relatively low concentrations of these compounds. The ethanol yields from concentrated hydrolyzates were above 97% of theoretical with exception of pine hydrolyzate produced at high severity which had a fairy good yield of 87%. The quantitative analysis of inhibitors and the fermentability investigation showed that both the original and concentrated hydrolyzates from the concentrated sulfuric acid process were readily fermentable, and furfural was singled out as the most important inhibitor in these hydrolyzates.


Bioethanol ◽  
2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Muhammad Nasidi ◽  
Reginald C. Agu ◽  
Yusuf Deeni ◽  
Idris Bala Giginyu ◽  
Graeme Walker

AbstractEfficient starch saccharification is an essential step towards achieving improved ethanol yields by fermentation. Sorghum grains are important starch sources for bioconversion to ethanol. In the present study, disease degraded (spoilt) husked grains from Nigerian sorghum cultivars were obtained from field sites and subjected to bioprocessing to ethanol. The crude husked grains (comprising husks, spikelet, awn, rachis and pubescence materials) were hammer milled and each meal separately mashed with enzyme cocktails comprising amylase, glucanase and protease enzymes. The saccharified worts obtained were then fermented with the yeasts, Saccharomyces cerevisiae and Pichia stipitis (aka Scheffersomyces stipitis), without exogenous nutrient supplementation. Sugars liberated during mashing were determined and it was found that enzymatic hydrolysis of milled sorghum grains was effective in yielding favourable levels of fermentable sugars up to 70g sugar/100g substrate with one particular cultivar (KSV8). Ethanol and carbon dioxide production was measured from subsequent trial fermentations of the sorghum mash and it was found that S. cerevisiae produced ethanol levels equating to 420 L/t that compares very favourably with yields from wheat and barley. Our findings show that crude degraded sorghum grains represent favourable low-cost feedstocks for bioconversion to ethanol with reduced energy input and without additional costs for nutrient supplementation during fermentation. Consequently, our results suggest some economic benefits could be derived from spoilt or degraded sorghum grains.


Processes ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 64 ◽  
Author(s):  
Nkosikho Dlangamandla ◽  
Seteno Ntwampe ◽  
Justine Angadam ◽  
Elie Itoba-Tombo ◽  
Boredi Chidi ◽  
...  

To sustainably operate a biorefinery with a low cost input in a commercial setting, the hydrolysis of lignocellulosic biomass must be undertaken in a manner which will impart environmental tolerance while reducing fermenter inhibitors from the delignification process. The challenge lies with the highly recalcitrant lignin structure, which limits the conversion of the holocelluloses to fermentable total reducing sugars (TRS). Due to these challenges, sustainable and innovative methods to pre-treat biomass must be developed for delignocellulolytic operations. Herein, Nepenthes mirabilis digestive fluids shown to have ligninolytic, cellulolytic and xylanolytic activities were used as an enzyme cocktail to hydrolyse mixed agro-waste constituted by Citrus sinensis (orange), Malus domestica (apple) peels, cobs from Zea mays (maize) and Quercus robur (oak) yard waste. The digestive fluids contained carboxylesterases (529.41 ± 30.50 U/L), β-glucosidases (251.94 ± 11.48 U/L) and xylanases (36.09 ± 18.04 U/L), constituting an enzymatic cocktail with significant potential for the reduction in total residual phenolic compounds (TRPCs), while being appropriate for holocellulose hydrolysis. Furthermore, the maximum TRS obtainable was 310 ± 5.19 mg/L within 168 h, while the TRPCs were reduced from 6.25 ± 0.18 to 4.26 ± 0.09 mg/L, which was lower than that observed when conventional methods were used. Overall, N. mirabilis digestive fluids demonstrated an ability to support biocatalytic processes with minimised cellulases hydrolysis interference. Therefore, the digestive enzymes in N. mirabilis pods can be used in an integrated system for feedstock hydrolysis in a second generation biorefinery.


2018 ◽  
Vol 17 (4) ◽  
pp. 349-354
Author(s):  
Qadir Rahman ◽  
Anwar Farooq ◽  
Amjad Gilani Mazhar ◽  
Nadeem Yaqoob Muhammad ◽  
Ahmad Mukhtar

This study investigates the effect of enzyme formulations (Zympex-014, Kemzyme dry-plus and Natuzyme) on recovery of phenolics from Peganum hermala (harmal) leaves, under optimized conditions using response surface methodology. As compared to the other enzyme complexes, the yield (34 g/100g) obtained through Zympex-014-assisted extraction was higher under optimized conditions such as time (75 min), temperature (70°C), pH (6.5) and enzyme concentration (5 g/100 g) using central composite design (CCD). Effectiveness of Zympex-014 towards hydrolysis of P. hermala leaves cell wall was examined by analyzing the control and enzyme-treated leave residues using scanning electron microscope (SEM). GC/MS characterization authenticated the presence of quercetin (1.44), gallic acid (0.23), caffeic acid (0.04), cinnamic acid (0.05), m-coumaric acid (0.23) and p-coumaric acid (0.37 μg/g) as the potent phenolics in Zympex-014 based extract. It can be concluded from the findings of the current work that pre-treatment of P. hermala leaves with Zympex-014 significantly enhanced the recovery of phenolics that supports its potential uses in the nutra-pharamaceutical industry.


2020 ◽  
Vol 16 (4) ◽  
pp. 455-461
Author(s):  
Gabriela M. Baia ◽  
Otniel Freitas-Silva ◽  
Murillo F. Junior

Fruits and vegetables are foods that come into contact with various types of microorganisms from planting to their consumption. A lack or poor sanitation of these products after harvest can cause high losses due to deterioration and/ or pathogenic microorganisms. There are practically no post-harvest fungicides or bactericides with a broad spectrum of action that have no toxic residual effects and are safe. However, to minimize such problems, the use of sanitizers is an efficient device against these microorganisms. Chlorine is the most prevalent sanitizing agent because of its broad spectrum, low cost and well-established practices. However, the inevitable formation of disinfection by-products, such as trihalomethanes (THMs) and haloacetic acids (HAAs), is considered one of the main threats to food safety. Alternative sanitizers, such as chlorine dioxide (ClO2) and ozone, are becoming popular as a substitute for traditional post-harvest treatments. Thus, this review addresses the use of chlorine, chlorine dioxide and ozone emphasizing aspects, such as usage, safe application, spectrum of action and legislation. In order to ensure the quality and safety of final products, the adoption of well-prepared sanitation and sanitation programs for post-harvest fruits and vegetables is essential.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 320
Author(s):  
Arnaud Masselin ◽  
Antoine Rousseau ◽  
Stéphanie Pradeau ◽  
Laure Fort ◽  
Rodolphe Gueret ◽  
...  

Chitin oligosaccharides (COs) hold high promise as organic fertilizers in the ongoing agro-ecological transition. Short- and long-chain COs can contribute to the establishment of symbiotic associations between plants and microorganisms, facilitating the uptake of soil nutrients by host plants. Long-chain COs trigger plant innate immunity. A fine investigation of these different signaling pathways requires improving the access to high-purity COs. Here, we used the response surface methodology to optimize the production of COs by enzymatic hydrolysis of water-soluble chitin (WSC) with hen egg-white lysozyme. The influence of WSC concentration, its acetylation degree, and the reaction time course were modelled using a Box–Behnken design. Under optimized conditions, water-soluble COs up to the nonasaccharide were formed in 51% yield and purified to homogeneity. This straightforward approach opens new avenues to determine the complex roles of COs in plants.


2021 ◽  
Author(s):  
Harsha Bantawal ◽  
Sandhya U. Shenoy ◽  
Denthaje Krishna Bhat

CaTiO3 has attracted enormous interest in the field of photocatalytic dye degradation and water splitting owing to its low cost, excellent physicochemical stability and structural tunability. Herein, we have developed...


2021 ◽  
Author(s):  
Yuxiao Dong ◽  
Dongshen Tong ◽  
Laibin Ren ◽  
Xingtao Chen ◽  
Hao Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document