Foliar application of triacontanol ameliorates heat stress through regulation of the antioxidant defense system and improves yield of eggplant

2024 ◽  
Vol 84 ◽  
H. Faiz ◽  
O. Khan ◽  
I. Ali ◽  
T. Hussain ◽  
S. T. Haider ◽  

Abstract Transplanting time and genotype contribute to improving crop yield and quality of eggplant (Solanum melongena L.). A field experiment was conducted to investigate the impact of foliar applied of triacontanol (TRIA) and eggplant genotypes 25919, Nirala, 28389 and Pak-10927,transplanted on 1 March,15 March, and 1 April on exposure to high air temperature conditions. The experiment was performed according to Randomized Complete Block Design and the data was analyzed by using Tuckey,s test . The TRIA was applied at 10µM at flowering stage; distilled water was used as the control. Rate of photosynthesis and transpiration, stomatal conductance, water use efficiency, and effects on antioxidative enzymes (superoxide dismutase, catalase and peroxidase) were evaluated. The 10µM TRIA increased photosynthesis rate and water use efficiency and yield was improved in all genotypes transplanted at the different dates. Foliar application of 10µM TRIA increased antioxidative enzyme activities (SOD, POD & CAT) and improved physiological as well as biochemical attributes of eggplant genotypes exposed to high heat conditions. Highest activity of dismutase enzyme 5.41mg/1g FW was recorded in Nirala genotype in second transplantation. Whereas, lowest was noted in PAK-10927 (2.30mg/g FW). Maximum fruit yield was found in accession 25919 (1.725kg per plant) at 1st transplantation with Triacontanol, whereas accession PAK-10927 gave the lowest yield (0.285 kg per plant) at control treatment on 3rd transplantation. Genotype, transplanting date and application of TRIA improved growth, yield and quality attributes under of heat stress in eggplant.

2016 ◽  
Vol 47 (2) ◽  
Abass & Alag

A field study was conducted during the spring and autumn seasons of 2014 at the experimental farm of Field Crop Department, College of  Agriculture (Abo-Ghraib) - University of Baghdad, to study the effect of Irrigation deficiency quantities and concentrations of Proline acid on yield , its components, water consumptive and water use efficiency of sunflower (Helianthus annus L. ) for Luleo hybrid. Randomized Complete Block Design (RCBD) in arrangement of a split-plot with three replications were used. Irrigation treatments, control (depletion  50% of available water) and 60% , 50%  40% of control treatment, were assigned as a main plots. while proline acid concentrations of 0, 30, 60 and 90 mg.L-1 were assigned as a subplots. The results showed that there is no significant differences between the control treatment and 60% of the control for  the period from planting to 50% flowering, number of leaves, relative water content, nitrogen concentration in leaves, fertilization percentage, number of seeds in the head,100 seed weight and seeds yield reaching 3.90, 2.46 t.ha-1  and 3.78 , 2.41 t.ha-1 for spring and autumn seasons respectively. which indicates the possibility of saving 40% of the water consumption which is estimated 1920.00, 2960.00 m3. ha-1. Season-1  for two seasons respectively without any yield reduction. While the percentage of decline in seeds yield for treatments 50% and 40% from the control treatment for spring season were 14.61%  , 19.74% respectively and 21.95 % , 33.33% for autumn season comparing with control. Irrigation treatment 40%, 60% of the control treatments gave the best water use efficiency for both seasons respectively. a concentrations of Proline acid affect significantly most of studied traits. Increasing of Proline to 60mg.L-1 gave the to increase in fertilization percentage was  و70.2081.% 100 seed weight7.12 و7.52 gm, seed yield 3.75, 2.21 t.ha-1 and water use efficiency 0.84 و0.29  kg seed.m-3 water comparing with control for two seasons respectively .The interaction between irrigation and Proline acid showed a significantly effect on all characteristics seeds yield components traits in both seasons. We therefore recommend that in case of limited  irrigation water  by %60 by the need of the full irrigation (50 % depletion of available water) without a significant decrease in product seed yield, in addition to possibility treatment of  sunflower plants with Proline acid with 60 mg .L-1 to improvement capacity of water stress.

2018 ◽  
Vol 24 (3) ◽  
pp. 152
Sabah Anwer Almasraf ◽  
Ahmed Hatif Salim

Sustainable crop production in a coarse soil texture is challenging due to high water permeability and low soil water holding capacity. In this paper, subsurface water retention technology (SWRT) through impermeable polyethylene membranes was placed at depth 35 cm below ground surface and within the root zone to evaluate and compare the impact of these membranes and control treatment (without using the membranes) on yield and water use efficiency of eggplant inside the greenhouse. The study was conducted in Al-Fahamah Township, Baghdad, Iraq during spring growing season 2017. Results demonstrated the yield and water use efficiencies were 3.483 kg/m2 and 5.653 kg/m3, respectively for SWRT treatment plot and 3.286 kg/m2 and 3.709 kg/m3, respectively for treatment without using SWRT. The increasing percentages for yield and water use efficiency were 6% and 52%, respectively. Additionally, saving in irrigation water in the SWRT membrane was about 44% of the total applied depth comparing with the control treatment.    

2021 ◽  
Vol 11 (1) ◽  
M. A. Gomaa ◽  
Essam E. Kandil ◽  
Atef A. M. Zen El-Dein ◽  
Mamdouh E. M. Abou-Donia ◽  
Hayssam M. Ali ◽  

AbstractIn Egypt, water shortage has become a key limiting factor for agriculture. Water-deficit stress causes different morphological, physiological, and biochemical impacts on plants. Two field experiments were carried out at Etay El-Baroud Station, El-Beheira Governorate, Agriculture Research Center (ARC), Egypt, to evaluate the effect of potassium silicate (K-silicate) of maize productivity and water use efficiency (WUE). A split-plot system in the four replications was used under three irrigation intervals during the 2017 and 2018 seasons. Whereas 10, 15, and 20 days irrigation intervals were allocated in main plots, while the three foliar application treatments of K-silicate (one spray at 40 days after sowing; two sprays at 40 and 60 days; and three sprays at 40, 60, and 80 days, and a control (water spray) were distributed in the subplots. All the treatments were distributed in 4 replicates. The results indicated that irrigation every 15 days gave the highest yield in both components and quality. The highly significant of (WUE) under irrigation every 20 days. Foliar spraying of K-silicate three times resulted in the highest yield. Even under water-deficit stress, irrigation every fifteen days combined with foliar application of K-silicate three times achieved the highest values of grain yield and its components. These results show that K-silicate treatment can increase WUE and produce high grain yield requiring less irrigation.

2012 ◽  
Vol 212-213 ◽  
pp. 578-585
Zhong Wen Yang ◽  
Jun Ying Jin ◽  
Xin Yi Xu

Water stress is an important approach to use water resources efficiently and remit the agricultural water shortage. Hemarthria compressa is one of perennial grasses, a pasture of high quality, which has abundant species resources in China. To explore the response of the growth, yield and water use efficiency(WUE) of Hemarthria compressa under water stress, this study, adapting pot experiment, imposed three water stress degree (LD, MD and SD) treatments and a control treatment on Hemarthria compressa. The data of growth indicators during control period, yield and total water consumption were obtained. The results show a noticeable inhibitory action of water stress on the growth of Hemarthria compressa. Along with the intensifying of water stress, plant height increment, leaf area, total biomass, dry matter of each organ and yield decreased, and the root-shoot ratio increased firstly and inclined to slump finally. Plants under the middle water stress treatment achieved the greatest WUE of 38.25 kg/m3. The first 10d in the water control period was the most sensitive period of the pasture responding to water stress.

2016 ◽  
Vol 46 (7) ◽  
pp. 1145-1150 ◽  
Daniel Fonseca de Carvalho ◽  
Dionizio Honório de Oliveira Neto ◽  
Luiz Fernando Felix ◽  
José Guilherme Marinho Guerra ◽  
Conan Ayade Salvador

ABSTRACT: The aim of the present study was to evaluate the effect of different irrigation depths on the yield, water use efficiency (WUE), and yield response factor (Ky) of carrot (cv. 'Brasília') in the edaphoclimatic conditions of Baixada Fluminense, RJ, Brazil. Field trials were conducted in a Red-Yellow Argisol in the 2010-2011period. A randomized block design was used, with 5 treatments (depths) and 4 replicates. Depths were applied by drippers with different flow rates, and the irrigation was managed by time domain reflectometry (TDR) technique. The reference (ETo) and crop (ETc) evapotranspiration depths reached 286.3 and 264.1mm in 2010, and 336.0 and 329.9mm in 2011, respectively. The root yield varied from 30.4 to 68.9t ha-1 as a response to treatments without irrigation and 100% replacement of the soil water depth, respectively. Values for WUE in the carrot crop varied from 15 to 31kg m-3 and the mean Ky value was 0.82. The mean values for Kc were obtained in the initial (0.76), intermediate (1.02), and final (0.96) stages. Carrot crop was influenced by different water depths (treatments) applied, and the highest value for WUE was obtained for 63.4% of soil water replacement.

Irriga ◽  
2015 ◽  
Vol 20 (3) ◽  
pp. 528-543 ◽  
Marcelo Rossi Vicente ◽  
Everardo Chartuni Mantovani ◽  

EFEITO DE DIFERENTES LÂMINAS DE IRRIGAÇÃO NAS VARIÁVEIS DE DESENVOLVIMENTO E PRODUÇÃO DO CAFEEIRO IRRIGADO POR PIVÔ CENTRAL  MARCELO ROSSI VICENTE1; EVERARDO CHARTUNI MANTOVANI2; ANDRÉ LUÍS TEIXEIRA FERNANDES3; FÁBIO TEIXEIRA DELAZARI4 E EDMILSON MARQUES FIGUEREDO5 1 Instituto Federal do Norte de Minas Gerais, Salinas, MG, [email protected] Departamento de Engenharia Agrícola, Universidade Federal de Viçosa, Viçosa, MG, [email protected] Universidade de Uberaba, Uberaba, MG, Fábio Teixeira Delazari, [email protected] Departamento de Fitotecnia, Universidade Federal de Viçosa, Viçosa, MG, [email protected] Bahia Farm Show, Luís Eduardo Magalhães, BA, [email protected]  1      RESUMO O presente trabalho foi conduzido com objetivo de avaliar o efeito de diferentes lâminas de irrigação nas variáveis de produção, estádios maturação de frutos e eficiência no uso da água pela cultura do cafeeiro irrigado por pivô central equipado com emissores LEPA, na região Oeste da Bahia. Realizou-se o trabalho na fazenda Café do Rio Branco, localizada em Barreiras - BA em cafeeiros adultos da variedade Catuaí IAC 144. O experimento obedeceu ao delineamento de blocos casualizados, composto de cinco tratamentos correspondentes à 70, 85, 100, 125 e 150% da lâmina de irrigação determinada pelo software Irriplus. As produtividades, os estádios de maturação dos frutos e eficiência no uso da água do cafeeiro foram submetidos à análise de variância e regressão, em que os modelos foram escolhidos baseados na significância dos coeficientes de regressão utilizando-se o teste t de 1 a 10% de probabilidade. Diante dos resultados obtidos, pode-se concluir que, a produtividade da cultura do café foi expressivamente dependente da lâmina de água aplicada, sendo que a maior produtividade (60 sc ha-1) foi alcançada com a lâmina de irrigação acumulada de 661 mm ano-1, correspondente à 96% da lâmina de irrigação determinada pelo software Irriplus. A lâmina que proporcionou a máxima porcentagem de frutos cereja (44,1%) foi de 723 mm ano-1 (105%). A lâmina que proporcionou a maior eficiência no uso da água foi de 480 mm ano-1 (70%). Palavras-Chave: Coffea arabica, manejo da irrigação, emissor LEPA, uso eficiente da água.  VICENTE, M. R.; MANTOVANI, E. M.; FERNANDES, A. L. T.; DELAZARI, F. T.; FIGUEREDO, E. M.EFFECTS OF DIFFERENT LEVELS OF IRRIGATION DEPTHS   ON GROWTH AND PRODUCTION VARIABLES OF COFFEE UNDER CENTER PIVOT  IRRIGATION     2        ABSTRACT This study aimed to evaluate the effect of different irrigation depths on yield, ripening stages and water use efficiency by the   coffee crop irrigated by center pivot with LEPA emitters in western Bahia. The experiment was carried out at the Café Rio Branco farm, in Barreiras city, Bahia state, using  adult coffee trees of cv. Catuaí IAC 144. A completely randomized block design was used with five treatments consisting of 70, 85, 100, 125 and 150 % of ETc, determined by the Irriplus software.  Data of yield, fruit ripening stage and water use efficiency were evaluated   using analyses of variance  and regression. Models were chosen based on level of significance of   regression coefficients using the Student´s t-test, 1 to  10% probability.  Based on the results,  coffee crop yield was highly dependent on  the water depth applied. The highest yield (3.6 ton/ha) was achieved  using accumulated irrigation depth of 661 mm year -1 (96 % of Etc).  Water depths of   723 mm year-1 (105 %) and 480 mm year-1 (70% ETc)  provided the highest percentage of cherry fruit (44.1%) and the highest water use efficiency, respectively. Keywords: Coffea arábica, irrigation management, LEPA emitter, water use efficiency.

Forests ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 14 ◽  
Maricar Aguilos ◽  
Clément Stahl ◽  
Benoit Burban ◽  
Bruno Hérault ◽  
Elodie Courtois ◽  

Warmer and drier climates over Amazonia have been predicted for the next century with expected changes in regional water and carbon cycles. We examined the impact of interannual and seasonal variations in climate conditions on ecosystem-level evapotranspiration (ET) and water use efficiency (WUE) to determine key climatic drivers and anticipate the response of these ecosystems to climate change. We used daily climate and eddyflux data recorded at the Guyaflux site in French Guiana from 2004 to 2014. ET and WUE exhibited weak interannual variability. The main climatic driver of ET and WUE was global radiation (Rg), but relative extractable water (REW) and soil temperature (Ts) did also contribute. At the seasonal scale, ET and WUE showed a modal pattern driven by Rg, with maximum values for ET in July and August and for WUE at the beginning of the year. By removing radiation effects during water depleted periods, we showed that soil water stress strongly reduced ET. In contrast, drought conditions enhanced radiation-normalized WUE in almost all the years, suggesting that the lack of soil water had a more severe effect on ecosystem evapotranspiration than on photosynthesis. Our results are of major concern for tropical ecosystem modeling because they suggest that under future climate conditions, tropical forest ecosystems will be able to simultaneously adjust CO2 and H2O fluxes. Yet, for tropical forests under future conditions, the direction of change in WUE at the ecosystem scale is hard to predict, since the impact of radiation on WUE is counterbalanced by adjustments to soil water limitations. Developing mechanistic models that fully integrate the processes associated with CO2 and H2O flux control should help researchers understand and simulate future functional adjustments in these ecosystems.

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1318 ◽  
Zsuzsanna Farkas ◽  
Emese Varga-László ◽  
Angéla Anda ◽  
Ottó Veisz ◽  
Balázs Varga

The effects of simulated waterlogging, drought stress and their combination were examined in a model experiment in Martonvásár, Hungary, in 2018. Four modern winter wheat varieties (‘Mv Toborzó’ (TOB), ‘Mv Mambó’ (MAM), ‘Mv Karizma’ (KAR), ‘Mv Pálma’ (PAL)) and one old Hungarian winter wheat cultivar (‘Bánkúti 1201’ (BKT)) were tested. Apart from the control treatment (C), the plants were exposed to two different abiotic stresses. To simulate waterlogging (WL), plants were flooded at four leaf stage, while in the WL + D treatment, they were stressed both by waterlogging and by simulated drought stress at the early stage of plant development and at the heading stage, respectively. The waterlogging treatment resulted in a significant decrease in plant biomass (BKT, TOB), number of spikes (TOB), grain yield (BKT, TOB), water use (BTK) and water-use efficiency (TOB, MAM, PAL) compared to the controls. The combined treatment (WL + D) led to a significant decrease in plant height (BTK, MAM, KAR), number of spikes (BTK, TOB, MAM, KAR), thousand kernel weight (TOB), harvest index (BTK), biomass, grain yield, water-use efficiency (in all varieties) and water use (BKT, TOB, MAM, KAR) of the plants. The best water-use efficiency was observed for MAM; therefore, this genotype could be recommended for cultivation at stress prone areas. The varieties MAM, KAR and PAL also showed good adaptability.

Sign in / Sign up

Export Citation Format

Share Document