Increased yield performance of mutation induced Soybean genotypes at varied agro-ecological conditions

2024 ◽  
Vol 84 ◽  
Author(s):  
M. S. H. Bhuiyan ◽  
M. A. Malek ◽  
R. M. Emon ◽  
M. K. Khatun ◽  
Mohammad Moneruzzaman Khandaker ◽  
...  

Abstract In soybean breeding program, continuous selection pressure on traits response to yield created a genetic bottleneck for improvements of soybean through hybridization breeding technique. Therefore an initiative was taken to developed high yielding soybean variety applying mutation breeding techniques at Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture (BINA), Bangladesh. Locally available popular cultivar BARI Soybean-5 was used as a parent material and subjected to five different doses of Gamma ray using Co60. In respect to seed yield and yield attributing characters, twelve true breed mutants were selected from M4 generation. High values of heritability and genetic advance with high genotypic coefficient of variance (GCV) for plant height, branch number and pod number were considered as favorable attributes for soybean improvement that ensure expected yield. The mutant SBM-18 obtained from 250Gy provided stable yield performance at diversified environments. It provided maximum seed yield of 3056 kg ha-1 with highest number of pods plant-1 (56). The National Seed Board of Bangladesh (NSB) eventually approved SBM-18 and registered it as a new soybean variety named ‘Binasoybean-5’ for large-scale planting because of its superior stability in various agro-ecological zones and consistent yield performance.

2019 ◽  
Vol 10 (2) ◽  
pp. 64
Author(s):  
Vina Eka Aristya ◽  
Taryono Taryono ◽  
Rani Agustina Wulandari

<p>Sesame is an producing seed whose oil is commercially needed. Breeding attempts to improve the productivity of sesame and yield components are induction of gamma ray irradiation mutations (Co-60). This study was aimed to identify effects of induced mutation by gamma rays irradiation in quantitative characteristics and yield of sesame in M4 generation originated from local cultivars. Two types of sesame (black and white) are irradiated with eight doses (100-800 Gy) of Co-60. The result showed a high variation in almost all morphological characters and modified the character of stem height from base to first branch, number of capsules per plant, biomass yield per plant, and seed yield per plant. Sesame irradiated with 600 Gy Co-60 doses has a beneficial effect on the number of capsules (black:120.23; white: 255.23, respectively) and the weight of 1000 seeds (black:3.63 g; white: 4.55 g, respectively). Genotypic Coefficient of Variation in M4 generation were recorded for high value for characters number of primary branches (30.16%), stem height from base to the first branch (30.96%), stem height from base to first capsule (14.82%), number of secondary branches (53.64%), number of nodes to first flower (72.66%), number of capsules/plant (44.90%), biomass yield/plant (28.37%), and seed yield/plant (36.68%). Genetic variability of plant population is very important for plant breeding program and to sustain level of high productivity.</p>


Author(s):  
M.A. Malek ◽  
R.M. Emon ◽  
M.K. Khatun ◽  
M.S.H. Bhuiyan ◽  
Adedze Yawo Mawunyo Nevame ◽  
...  

Background: Soybean is an important source of food, protein and oil and hence more research is essential to increase its yield under different agro-ecological conditions, including stress. In this regard, four popular soybean varieties viz. Shohag, BDS-4, BAU-S/64 and BARI Soybean-5 were irradiated using Co60 gamma rays to create genetic variation for earliness, higher seed yield and other desirable agronomic traits. Methods: The experiments were conducted at Bangladesh Institute of Nuclear Agriculture (BINA) Headquarters farm, Mymensingh during 2006-2009 and 28 elite mutant lines were selected for evaluation. The mutant line, SBM-22 derived from mother variety BARI Soybean-5 irradiated with 300Gy of gamma rays was found to be superior compared to other mutants. Considering the superior performance of mutant SBM-22 including 28 mutants and mother check variety BARI Soybean-5, were evaluated through different trials. The evaluation trials were conducted at different agro-ecological zones of the country during Rabi season (January to April) of 2010-2018. Result: Significant variations were observed both in individual location and over locations for all traits. Reactions to major diseases and insect-pests infestation were also studied. Due to better performance of the mutant SBM-22, Bangladesh Institute of Nuclear Agriculture (BINA) applied to the National Seed Board (NSB) of Bangladesh for registration as an important soybean variety “Binasoybean-6”. Consequently, the NSB of Bangladesh registered SBM-22 as an improved soybean variety in 2019 as Binasoybean-6 for commercial cultivation.


Author(s):  
N.V. Sergeev ◽  
◽  
A.Yu. Pivkin

The experience of cultivation of soybeans in SC "Agricultural machinery" of the Kaluga region on an area of 190 hectares shows that the soybean variety Alaska is sufficiently adapted to the soil and climatic conditions of this region, provides a high seed yield (up to 32 c / ha) and a high yield (up to 1344 kg / ha) relatively inexpensive protein. However, this variety has a long growing season (95-105 days) and therefore desiccation of crops is required for harvesting for seeds.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3808 ◽  
Author(s):  
Blazej Podlesny ◽  
Bogumila Kumanek ◽  
Angana Borah ◽  
Ryohei Yamaguchi ◽  
Tomohiro Shiraki ◽  
...  

Single-walled carbon nanotubes (SWCNTs) remain one of the most promising materials of our times. One of the goals is to implement semiconducting and metallic SWCNTs in photonics and microelectronics, respectively. In this work, we demonstrated how such materials could be obtained from the parent material by using the aqueous two-phase extraction method (ATPE) at a large scale. We also developed a dedicated process on how to harvest the SWCNTs from the polymer matrices used to form the biphasic system. The technique is beneficial as it isolates SWCNTs with high purity while simultaneously maintaining their surface intact. To validate the utility of the metallic and semiconducting SWCNTs obtained this way, we transformed them into thin free-standing films and characterized their thermoelectric properties.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 220
Author(s):  
Emil Khalikov

The intrinsic spectra of some distant blazars known as “extreme TeV blazars” have shown a hint at an anomalous hardening in the TeV energy region. Several extragalactic propagation models have been proposed to explain this possible excess transparency of the Universe to gamma-rays starting from a model which assumes the existence of so-called axion-like particles (ALPs) and the new process of gamma-ALP oscillations. Alternative models suppose that some of the observable gamma-rays are produced in the intergalactic cascades. This work focuses on investigating the spectral and angular features of one of the cascade models, the Intergalactic Hadronic Cascade Model (IHCM) in the contemporary astrophysical models of Extragalactic Magnetic Field (EGMF). For IHCM, EGMF largely determines the deflection of primary cosmic rays and electrons of intergalactic cascades and, thus, is of vital importance. Contemporary Hackstein models are considered in this paper and compared to the model of Dolag. The models assumed are based on simulations of the local part of large-scale structure of the Universe and differ in the assumptions for the seed field. This work provides spectral energy distributions (SEDs) and angular extensions of two extreme TeV blazars, 1ES 0229+200 and 1ES 0414+009. It is demonstrated that observable SEDs inside a typical point spread function of imaging atmospheric Cherenkov telescopes (IACTs) for IHCM would exhibit a characteristic high-energy attenuation compared to the ones obtained in hadronic models that do not consider EGMF, which makes it possible to distinguish among these models. At the same time, the spectra for IHCM models would have longer high energy tails than some available spectra for the ALP models and the universal spectra for the Electromagnetic Cascade Model (ECM). The analysis of the IHCM observable angular extensions shows that the sources would likely be identified by most IACTs not as point sources but rather as extended ones. These spectra could later be compared with future observation data of such instruments as Cherenkov Telescope Array (CTA) and LHAASO.


Author(s):  
F. Frontera ◽  
E. Virgilli ◽  
C. Guidorzi ◽  
P. Rosati ◽  
R. Diehl ◽  
...  

AbstractNuclear astrophysics, and particularly nuclear emission line diagnostics from a variety of cosmic sites, has remained one of the least developed fields in experimental astronomy, despite its central role in addressing a number of outstanding questions in modern astrophysics. Radioactive isotopes are co-produced with stable isotopes in the fusion reactions of nucleosynthesis in supernova explosions and other violent events, such as neutron star mergers. The origin of the 511 keV positron annihilation line observed in the direction of the Galactic Center is a 50-year-long mystery. In fact, we still do not understand whether its diffuse large-scale emission is entirely due to a population of discrete sources, which are unresolved with current poor angular resolution instruments at these energies, or whether dark matter annihilation could contribute to it. From the results obtained in the pioneering decades of this experimentally-challenging window, it has become clear that some of the most pressing issues in high-energy astrophysics and astro-particle physics would greatly benefit from significant progress in the observational capabilities in the keV-to-MeV energy band. Current instrumentation is in fact not sensitive enough to detect radioactive and annihilation lines from a wide variety of phenomena in our and nearby galaxies, let alone study the spatial distribution of their emission. In this White Paper (WP), we discuss how unprecedented studies in this field will become possible with a new low-energy gamma-ray space experiment, called ASTENA (Advanced Surveyor of Transient Events and Nuclear Astrophysics), which combines new imaging, spectroscopic and polarization capabilities. In a separate WP (Guidorzi et al. 39), we discuss how the same mission concept will enable new groundbreaking studies of the physics of Gamma–Ray Bursts and other high-energy transient phenomena over the next decades.


Author(s):  
SK Datta ◽  
MAR Sarker ◽  
FMJ Uddin

The experiment was carried out to study the effect of variety and level of phosphorus fertilizer on the yield and yield components of lentil at the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh during October 2009 to March 2010. Three lentil varieties viz. BINA masur 2, BINA masur 3 and BARI masur 4 and four levels of phosphorus viz. 0 kg P ha-1 (P0), 15 kg P ha-1 (P15), 30 kg P ha-1 (P30) and 45 kg P ha-1 (P45) were used in this experiment. Varieties showed significant influence on the all characters except plant height. The highest seed yield (1165 kg ha-1) was observed in BARI masur 4, and the lowest seed yield (1028 kg ha-1) was found in BINA masur 3. Phosphorus fertilizer had a significant effect on all the plant characters studied except 1000 seed weight. The highest seed yield (1222kg ha-1) was observed in P45 (45 kg P ha-1) treatment and the lowest seed yield (893 kg ha-1) was found in P0 treatment. In case of interaction, effect of cultivar and phosphorus fertilizer doses had a significant effect on all the plant characters studied except seeds pod-1 and 1000-seed weight. The highest seed yield (1317 kg ha-1) was obtained in V3 X P45 treatment, and the lowest seed yield (830 kg ha-1) was observed in V2 X P0 treatment combination. Among the varieties BINA masur 2 and BARI masur 4 were superior to BINA masur 3 in respect of yield performance with 30 kg P ha-1. BARI masur 4 fertilized with 30 kg P ha-1 produced the highest seed yield. Int. J. Agril. Res. Innov. & Tech. 3 (1): 78-82, June, 2013 DOI: http://dx.doi.org/10.3329/ijarit.v3i1.16097


Author(s):  
Hugh P. Taylor

ABSTRACTOxygen isotope data are very useful in determining the source rocks of granitic magmas, particularly when used in combination with Sr, Pb, and Nd isotope studies. For example, unusually high δ18O values in magmas (δ18O> +8) require the involvement of some precursor parent material that at some time in the past resided on or near the Earth's surface, either as sedimentary rocks or as weathered or hydrothermally altered rocks. The isotopic systematics which are preserved in the Mesozoic and Cenozoic batholiths of western North America can be explained by grand-scale mixing of three broadly defined end-members: (1) oceanic island-arc magmas derived from a “depleted” (MORB-type?) source in the upper mantle (δ18O c. +6 and 87Sr/86Sr c. 0·703); (2) a high-18O (c. +13 to +17) source with a very uniform 87Sr/86Sr (c. 0·708 to 0·712), derived mainly from eugeosynclinal volcanogenic sediments and (or) hydrothermally altered basalts; and (3) a much more heterogeneous source (87Sr/86Sr c. 0·706 to 0·750, or higher) with a high δ18O (c. +9 to +15) where derived from supracrustal metasedimentary rocks and a much lower δ18O (c. +7 to +9) where derived from the lower continental crust of the craton. These end-members were successively dominant from W to E, respectively, within three elongate N–S geographic zones that can be mapped from Mexico all the way N to Idaho.18O/16O studies (together with D/H analyses) can, however, play a more important and certainly a unique role in determining the origins of the aqueous fluids involved in the formation of granitic and rhyolitic magmas. Fluid-rock interaction effects are most clear-cut when low-18O, low-D meteoric waters are involved in the isotopic exchange and melting processes, but the effects of other waters such as seawater (with a relatively high δD c. 0) can also be recognised. Because of these hydrothermal processes, rocks that ultimately undergo partial melting may exhibit isotopic signatures considerably different from those that they started with. We discuss three broad classes of potential source materials of such “hydrothermal-anatectic” granitic magmas, based mainly on water/rock (w/r), temperature (T), and the length of time (t) that fluid-rock interaction proceeds: (Type 1) epizonal systems with a wide variation in whole-rock δ18O and extreme 18O/16O disequilibrium among coexisting minerals (e.g. quartz and feldspar); (Type 2) deeper-seated and (or) longer-lived systems, also with a wide spectrum of whole-rock δ18O, but with equilibrated 18O/16O ratios among coexisting minerals; (Type 3) thoroughly homogenised and equilibrated systems with relatively uniform δ18O in all lithologies. Low-18O magmas formed by melting of rocks altered in a Type 2 or a Type 3 meteoric-hydrothermal system are the only kinds of “hydrothermal-anatectic” granitic magmas that are readily recognisable in the geological record. Analogous effects produced by other kinds of aqueous fluids may, however, be quite common, particularly in areas of extensional tectonics and large-scale rifting. The greatly enhanced permeabilities in such fractured terranes make possible the deep convective circulation of ground waters and sedimentary pore fluids. The nature and origin of low-18O magmas in the Yellowstone volcanic field and the Seychelles Islands are briefly reviewed in light of these concepts, as is the development of high-D, peraluminous magmas in the Hercynian of the Pyrenees.


2005 ◽  
Author(s):  
Jason X. Prochaska ◽  
J.S. Bloom ◽  
H.-W. Chen ◽  
R.J. Foley ◽  
D.A. Perley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document