scholarly journals In vitro study of antimicrobial activity of some plant seeds against bacterial strains causing food poisoning diseases

2022 ◽  
Vol 82 ◽  
Author(s):  
A. A. Abu-Zaid ◽  
A. Al-Barty ◽  
K. Morsy ◽  
H. Hamdi

Abstract In this research, some plant seeds powder was evaluated to find their potential effect to rule diseases of food poisoning. Antimicrobial effect of five plant seeds was examined contra Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella. pneumonia and Candida albicans by using well diffusion method. Antimicrobial activity studies revealed high potential activity of plant seeds powder of Nigella sativa L., cucurbita pepo, Sesamum radiatum, Trigonella foenum-graecum, Linum usitatissimum with variable efficiency contra tested microbial strains with concentration of 100 mg/ml, except Sesamum radiatum scored no effect. The T. foenum and N. sativa seed powder showed the largest inhibition zone (24-20 mm) contra K. pneumonia, followed by S. aureus (20-18 mm) and C. albicans (15mm) respectively. The five plant seeds powder exhibited bacteriostatic and bactericidal effects with MIC’s 20 and MBC 40 mg/ml against K. pneumonia, and MIC’s 40 and MBC 60 mg/ml against S. aureus. The results of this study indicated that plants seeds powder have promising antimicrobial activities and their potential applications in food process. It could be utilized as a natural medicinal alternative instead of chemical substance.

Author(s):  
Pavani Bellamkonda ◽  
Ramesh Kumar Koothati ◽  
Aamina Bee ◽  
Abhishree Desai ◽  
G. K. Aarthi ◽  
...  

Objective: Dental caries is an infectious disease in which S. mutans plays a key role. Haphazard and irrational use of antibiotics leads to antibiotic resistance and fatal diarrhoeal diseases in children. Antimicrobial potency of Terminalia chebula and Piper nigrum extracts against several bacterial strains have been documented. The aims of this study were to assess and compare the antimicrobial activities of T. chebula and P. nigrum extracts against S. mutans with Ciprofloxacin as the positive control. Materials and Methods: For this purpose, S. mutans was isolated from plaque samples of people with active caries lesions.  Antimicrobial potency of both T. chebula and P.nigrum were tested using agar well diffusion method. Results: All the tested extracts showed antibacterial activity against S. mutans bacteria. Regarding the two tested herbs extracts, a higher antimicrobial activity was shown by the methanol extract of T. chebula with a mean diameter of inhibition zone was 26.75mm and a minimum inhibitory concentration (MIC) at 25mg /ml concentration followed by acetonic extract. Conclusion: These findings confirm the Antimicrobial potency of T. chebula which can be used as an alternative antibiotic and/or in combination with allopathic antibiotics to prevent the antibiotic resistance.


2019 ◽  
Vol 16 (6) ◽  
pp. 931-938
Author(s):  
Hany M. Mohamed ◽  
Ashraf H.F. Abd El-Wahab

Background: Synthetic azo compounds and their derivatives have been studied extensively due to their biological and pharmacological activities. Pyranopyridines, pyranopyrimidines and tetrazoles derivatives have emerged as a promising and attractive scaffold in the development of potent biological and pharmacological agents. Objectives: To design a series of new benzochromeno(pyridine/pyrimidine/tetrazole) derivatives and evaluate their antimicrobial activity against some bacterial strains (Gram-positive and Gram-negative) and some fungal strains. Materials and Methods: The (E)-7-(4-chlorophenyl)-5-(phenyldiazenyl)-10-thioxo-7,9,10,11-tetrahydro-8Hnaptho[ 1,2-b]pyrano[2,3-d]pyrimidin-8-one (4) was synthesized by the reaction of 4H-naphtho[1,2-b]pyran-3- carbonitrile (3) with carbon disulfide in alcoholic potassium hydroxide solution. Reaction of 3 with sodium azide in DMF and in presence of ammonium chloride afforded 6-(phenyldiazenyl)-3-(1H-tetrazol-5-yl)-4Hbenzo[ h]chromen-2-amine (7) while with malononitrile, thiourea or urea gave chromeno[2,3-b]pyridine-9- carbonitrile (8), chromeno[2,3-d]pyrimidine-10-thione (9) and chromeno[2,3-d]pyrimidin-10-one (10), respectively. The assignment structures were established on the basis of spectral data. Results: In this study, the antimicrobial activity of the synthesized compounds 3-12 was examined for their in vitro antimicrobial activity by using agar diffusion method such as Mueller-Hinton agar medium for bacteria and Sabouraud’s agar medium for fungi. Ampicillin and mycostatine were included in the experiments as reference drugs. Conclusion: A series of new benzochromeno(pyridine/pyrimidine/tetrazole) derivatives were synthesized in this work. All compounds were evaluated in antimicrobial activities.


2018 ◽  
Vol 2 (1) ◽  
pp. 7-10 ◽  
Author(s):  
Miroslava Kačániová ◽  
Jaroslav Gasper ◽  
Margarita Terentjeva ◽  
Simona Kunová ◽  
Maciej Kluz ◽  
...  

Abstract The aim of this study was to evaluate antimicrobial activity of bees gastrointestinal Lactobacillus spp. of against Paenibacillus larvae. Content of the intestinal tract was cultured for isolation of Lactobacillus spp. Gut homogenates were plated on de Man, Rogosa and Sharpe agar (MRS, Oxoid) plates and incubated for 48-72h at 30°C anaerobically. Then, the identification of isolates with MALDI-TOF MS Biotyper was done. The bacterial strains Lactobacillus gasseri, L. amylovorus, L. kunkeei, L. fructivorans, Paenibacillus larvae were isolated from gut content of bees. The disc diffusion method was used for the determination of antimicrobial activities of the Lactobacillus supernatant against two strains of Paenibacillus larvae. The best antimicrobial activity of Lactobacillus against Paenibacillus larvae from gut was found in L. gasseri supernatant. Lesser degree of antimicrobial activity against P. larvae was found in L. kunkeei supernatant. The strongest antibacterial activity against P. larvae CCM 4438 was found in L. gasseri and L. amylovorus and the least antibacterial activity was found in L. fructivorans.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


2016 ◽  
Vol 11 (2) ◽  
pp. 248 ◽  
Author(s):  
Kathirvel Poonkodi ◽  
Subban Ravi

<p class="Abstract">The present study was aimed to evaluate the phytochemical screening and antimicrobial activity of the petroleum ether and methanol extracts from the mature leaves of <em>Richardia scabra</em> from India. Disc diffusion method was used to determine the zone inhibition of the tested samples for antibacterial and agar plug method was used to determine the antifungal activity, while the microtube-dilution technique was used to determine the minimum inhibitory concentration. Both extracts showed significant antibacterial and antifungal activities when tested against 10 bacterial and four fungal strains. The minimum inhibitory concentrations of the methanol extract of<em> R. scabra</em> ranged between 12.5–100 μg/mL for bacterial strains. Alkaloids, steroids, flavonoids, fatty acids, terpenoids and simple sugar were detected as phytoconstituents of extracts. To the best of our knowledge, this is the first report against antimicrobial activity of common weed species <em>R. scabra</em> found in India.</p><p> </p>


Author(s):  
Iswariya S. ◽  
Uma T. S.

Objective: The present study was designed to identify the bioactive phytochemicals and its antibacterial and in vitro anti-inflammatory potential of aqueous and methanolic seed extract of Citrullus lanatus.Methods: The phytochemical screening of both the aqueous and methanolic seed extract was carried out qualitatively to identify the major Phyto-constituents present in the extracts. The antimicrobial activity of the extracts was evaluated against six pathogenic bacterial strains by agar well diffusion method and the Minimum inhibitory concentration (MIC) was determined by broth dilution method. In vitro anti-inflammatory activity of C. lanatus seed extracts was evaluated by using human red blood cell (HRBC) membrane stabilization and inhibition of albumin denaturation method.Results: The results of the study indicated that both the extracts of the seed having antimicrobial activity, while the methanolic extract showed more significant activity against the tested organism than aqueous extract. Methanol extract had the lowest MIC of 1.562 mg/ml against Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia, Pseudomonas aeruginosa and Bacillus subtilis, whereas in aqueous extract was highly sensitive to Bacillus subtilis, E. coli and Klebsiella pneumonia with MIC of 3.125 and 6.25 mg/ml, respectively. Methanolic extracts exerted comparative higher anti-inflammatory activity than aqueous extract.Conclusion: Present study provides a firm evidence to support that the synergistic effect of C. lanatus seed extracts having potent anti-inflammatory and antimicrobial property, which might serve as an effective drug for various microbial infections and inflammatory disorders.


Author(s):  
M. Binigha ◽  
R. Gayatri Devi ◽  
J. Selavaraj ◽  
A. Jothi Priya

Tecoma stans is a flowering plant belonging to the family Bignoniaceae. It is the floral emblem of the Bahamas. Abutilon indicum belongs to the family Malvaceae. It is also called Indian Mallow. Tecoma stans and Abutilon indicumhave antimicrobial activity and can be used in producing antibiotics. There is an urgent need to produce new antibiotics as there is an increase in the development of pathogen resistant drugs. The aim of this study was to compare the antimicrobial activity of ethanolic extract of Tecoma stansand Abutilonindicum leaves. E.faecalis bacteria were maintained in nutrient agar slopes. The powder of the two herbs, were subjected to extraction by Soxhlet extractor and was concentrated to dry residue by Agar well diffusion method. The nutrient broth was inoculated with bacterial strains. The culture was adjusted to 0.5McFarland turbidity standard. Lawn culture was done in Muller-Hinton agar plate and then the plates were dried. A 6 mm diameter well is bored for different concentrations. The extracts were introduced into the well and allowed to stand for 24 hrs. The antibacterial activity was determined by measuring the zone of inhibition. The present finding on the antimicrobial potential of Abutilon indicum and Tecoma stands showed that the two plants have growth inhibitory activity against oral pathogen E. faecalis. Abutilon indicum has a zone of inhibition greater than Tecoma stans. Abutilon indicum exhibited better activity compared to Tecoma stans.


2019 ◽  
Vol 2 (1) ◽  
pp. 19
Author(s):  
Murni Halim

A study was carried out to screen for phytochemical constituents and assess the antioxidant and antimicrobial activities of Senna alata and Senna tora leaf extracts. The leaves were first dried at room temperature and 50°C in an oven prior to solvent extraction using ethanol and methanol. The in-vitro qualitative assays showed that both S. alata and S. tora leaf extracts contained bioactive and secondary metabolites components such as tannins, steroids, saponin, terpenoids, glycosides, flavonoids and phenols. The antioxidant activity and capacity test were carried out by conducting free radical of 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and Ferric reduction antioxidant plasma (FRAP) assays. Both assays showed S. tora leaf extract has higher antioxidant capacity than S. alata leaf extract. The efficacy of these leaf extracts were tested against skin pathogens through agar well diffusion method. S. alata extract showed an inhibition zone (1.15 – 1.59 mm) against Pseudomonas aeruginosa while S. tora extracts exhibited a strong antimicrobial activity against S. epidermidis (inhibition zone of 12 – 16.94 mm) followed by P. aeruginosa (inhibition zone of 1 – 1.59 mm). Nonetheless, no inhibition zone was observed for S. aureus by both leaf extracts. The phytochemicals and antioxidant constituents as well as inhibitory potential on skin pathogens possessed by S. alata and S. tora leave highlighted their potential utilization in the development of natural drugs or cosmetics to treat skin related diseases or infections.


2019 ◽  
Vol 34 (1) ◽  
pp. 80-86 ◽  
Author(s):  
Dionyssia Papadopoulou ◽  
Alicja Dabrowska ◽  
Philip G. Harries ◽  
Jeremy S. Webb ◽  
Raymond N. Allan ◽  
...  

Background Chronic rhinosinusitis (CRS) is a common condition which affects the quality of life of millions of patients worldwide and has a significant impact on health-care resources. While Staphylococcus aureus bacterial biofilms play an important role in this disease, antimicrobial therapy is rarely effective and may promote antibiotic resistance. Thus, development of novel biofilm-targeting and antibiotic-sparing therapies is highly desirable and urgently required. Objective This in vitro study evaluated the antimicrobial activity of a novel synthetic honey-equivalent product which was designed to have the same reactive oxygen release profile as the engineered honey SurgihoneyRO™. Methods Treatment efficacy was investigated by assessment of planktonic growth, biofilm viability, thickness, and biomass using 12 CRS-related S. aureus mucosal bacterial strains. Results Both SurgihoneyRO™ and the synthetic honey-equivalent product inhibited growth of planktonic methicillin-resistant and methicillin-sensitive S. aureus strains, with the synthetic honey-equivalent product exhibiting a lower minimum inhibitory concentration. Treatment of established S. aureus biofilms reduced biofilm viability with 24-hour treatment resulting in a 2-log reduction in viability of biofilms formed by methicillin-resistant strains and a 1-log reduction in biofilms formed by methicillin-sensitive strains. Conclusions This preliminary study shows that the synthetic honey-equivalent product provides marked antimicrobial activity against S. aureus biofilms, with the potential for development in the clinical setting as an adjunctive biofilm-targeted therapy in CRS. The ultimate aim of such a product would be to reduce the need for antibiotics, steroids, and invasive surgical procedures in CRS patients as well as improving clinical outcomes following endoscopic sinus surgery.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Awol Mekonnen ◽  
Berhanu Yitayew ◽  
Alemnesh Tesema ◽  
Solomon Taddese

In this study, thein vitroantimicrobial activities of four plant essential oils (T. schimperi,E. globulus,R. officinalis, andM. Chamomilla) were evaluated against bacteria and fungi. The studies were carried out using agar diffusion method for screening the most effective essential oils and agar dilution to determine minimum inhibitory concentration of the essential oils. Results of this study revealed that essential oils ofT. schimperi,E. globulus, andR. officinaliswere active against bacteria and some fungi. The antimicrobial effect ofM. chamomillawas found to be weaker and did not show any antimicrobial activity. The minimum inhibitory concentration values ofT. schimperiwere<15.75 mg/mL for most of the bacteria and fungi used in this study. The minimum inhibitory concentration values of the other essential oils were in the range of 15.75–36.33 mg/mL against tested bacteria. This study highlighted the antimicrobial activity of the essential oil ofE. globulus,M. chamomilla,T. Schimperi, andR. officinalis. The results indicated thatT. schimperihave shown strong antimicrobial activity which could be potential candidates for preparation of antimicrobial drug preparation.


Sign in / Sign up

Export Citation Format

Share Document