scholarly journals Individual niche trajectories in nesting green turtles on Rocas Atoll, Brazil: an isotopic tool to assess diet shifts over time

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Karoline Fernanda Ferreira Agostinho ◽  
Leandro Rabello Monteiro ◽  
Ana Paula Madeira Di Beneditto

Abstract In this study, multi-tissue (yolk and carapace) stable isotope analysis was used to assess individual isotopic niche trajectories of nesting green turtles on Rocas Atoll, off northeastern Brazil, and to reveal a diet shift in the temporal dimension. The diet trajectories of individual green turtles were highly directional, with a stronger component towards decreasing values of δ15N from carapace to yolk. When the green turtles are in their foraging sites (temporal window measured by the yolk samples), they are more herbivores. Conversely, in a broader temporal window, the green turtles demonstrate a carnivore-omnivore strategy, such as represented by heavier δ15N values in the carapace. This finding confirms a temporal diet shift. This is the first study that applies trophic niche trajectories for sea turtles, adding a new isotopic tool to understand the trophic ecology of these migrant animals.

2018 ◽  
Vol 75 (6) ◽  
pp. 1949-1964 ◽  
Author(s):  
Diana M Matos ◽  
Jaime A Ramos ◽  
Joana G Calado ◽  
Filipe R Ceia ◽  
Jessica Hey ◽  
...  

Abstract Fisheries produce large quantities of discards, an important resource for scavenging seabirds. However, a policy reform banning discards, which is soon to be implemented within the EU, will impose a food shortage upon scavengers, and it is still largely unknown how scavengers will behave. We studied the diet (hard remains), trophic (stable isotope analysis), and foraging (individual tracking) ecology of two gull species breeding in sympatry: Audouin’s gull Larus audouinii (AG) and yellow-legged gull Larus michahellis (YLG), in South Portugal, under normal fishery activity (NFA; work days) and low fishery activity (LFA; weekends), over two consecutive years. We established a pattern of dietary, spatial, and temporal segregation between the two gull species. Under LFA, yellow-legged gulls reduced their time spent at-sea, thus foraging more in alternative habitats (e.g. refuse dumps) and widening their isotopic niche (i.e. generalist behaviour). Contrastingly, Audouin’s gull had a narrower trophic niche (i.e. specialist behaviour), foraging exclusively at-sea, reducing the amount of demersal fish and increasing the amount of pelagic fish in their diet. Under NFA, both species foraged mostly at-sea, feeding almost exclusively on fish, with increased consumption of demersal species (i.e. fishery discards). In general, yellow-legged gull had a broader trophic niche (i.e. generalist behaviour) when compared with the narrower isotopic niche of Audouin’s gull (i.e. specialist behaviour). Overall, both gull species relied heavily on fishery discards. However, there was visible dietary, spatial, and temporal segregation between the two species, associated with their dietary and habitat preferences that could be attributed to the availability of anthropogenic resources, such as fishery discards.


2020 ◽  
Vol 636 ◽  
pp. 107-121
Author(s):  
SEM Munroe ◽  
CL Rigby ◽  
NE Hussey

Quantifying the trophic structure and interactions of deepwater (>200 m depth) elasmobranch assemblages is required to improve our understanding of deepwater ecosystems and the impacts of increased deepwater exploitation. To this end, we investigated the trophic ecology of deepwater elasmobranchs on the Great Barrier Reef (GBR) using a stable isotope (δ13C and δ15N) approach. Our study included 4 species captured in the southern GBR deepwater eastern king prawn trawl fishery: the eastern spotted gummy shark Mustelus walkeri, the piked spurdog Squalus megalops, the pale spotted catshark Asymbolus pallidus, and the Argus skate Dentiraja polyommata. The δ13C and δ15N values of all 4 species ranged from -18.6 to -16.2‰ and 8.3 to 13.8‰, respectively. The small δ13C range was likely due to the limited number of unique carbon baseline sources typically found in deepwater environments. Despite this, 3 of the 4 species exhibited relatively low core (40% SEAb) isotopic niche overlap (<1 to 44%). Isotopic niche separation may be driven by multiple interacting factors including morphology, feeding strategies, or resource partitioning to reduce competition. Isotope analysis also provided evidence for intraspecific variation; S. megalops, D. polyommata and M. walkeri exhibited significant increases in δ15N (~3‰) and δ13C (~2‰) with size. Latitude, longitude, and depth had statistically significant but comparatively minor effects on isotope values (≤1‰) of the 4 species. Cumulatively, our results indicate that isotopic variation among deepwater elasmobranchs on the GBR is principally driven by size and species-level differences in resource use.


2020 ◽  
Vol 146 (1) ◽  
Author(s):  
Gilles Lepoint ◽  
Loïc N. Michel ◽  
Eric Parmentier ◽  
Bruno Frédérich

Many damselfishes (Pomacentridae) are herbivorous or omnivorous with an important contribution from different kinds of algae in their diet. They display different levels of territoriality and farming behavior, from almost non territorial to monoculture farmers. In addition, a few species inhabit seagrass meadows but, presently, none can be considered as seagrass-eating specialists. The footballer demoiselle, Chrysiptera annulata, is found in the seagrass meadows on the reef flat of the Great Reef of Toliara (Madagascar, Mozambique Channel). In the light of this unusual habitat for a pomacentrid, this study aimed to answer three questions: 1) What is the diet of C. annulata? 2) Do the resources supporting this diet include seagrass? 3) Does its trophic niche overlap those of other sympatric damselfishes (Pomacentrus trilineatus, Chrysiptera unimaculata and Plectroglyphidodon lacrymatus) living in close association with macrophytes or eating algae? Stomach content examination and stable isotope analysis showed that the footballer demoiselle is not a seagrass consumer but is an omnivorous/herbivorous species heavily relying on algal resources and small invertebrates. SIAR, a stable isotope mixing model, indicated it assimilated large amounts of turf algae, and various benthic or planktonic invertebrates in lower proportions. SIBER metrics revealed that the isotopic niche of the footballer demoiselle partly overlaps that of its congener, C. unimaculata, but not those of P. trilineatus and P. lacrymatus. Trophic strategies of C. annulata differed both from farming species such as P. lacrymatus and from less territorial herbivores such as P. trilineatus. Its seagrass meadow habitat on the Great Reef of Toliara allows the conquest of an unusual habitat for damselfishes and could limit competition with C. unimaculata, a species displaying the same territorial behavior and the same isotopic niche but living on the reef itself.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1578 ◽  
Author(s):  
Nancy Cabanillas-Terán ◽  
Peggy Loor-Andrade ◽  
Ruber Rodríguez-Barreras ◽  
Jorge Cortés

Sea urchins are important grazers and influence reef development in the Eastern Tropical Pacific (ETP).Diadema mexicanumandEucidaris thouarsiiare the most important sea urchins on the Ecuadorian coastal reefs. This study provided a trophic scenario for these two species of echinoids in the coral-rocky reef bottoms of the Ecuadorian coast, using stable isotopes. We evaluated the relative proportion of algal resources assimilated, and trophic niche of the two sea urchins in the most southern coral-rocky reefs of the ETP in two sites with different disturbance level. Bayesian models were used to estimate the contribution of algal sources, niche breadth, and trophic overlap between the two species. The sea urchins behaved as opportunistic feeders, although they showed differential resource assimilation.Eucidaris thouarsiiis the dominant species in disturbed environments; likewise, their niche amplitude was broader than that ofD. mexicanumwhen conditions were not optimal. However, there was no niche overlap between the species. The Stable Isotope Analysis in R (SIAR) indicated that both sea urchins shared limiting resources in the disturbed area, mainlyDictyotaspp. (contributions of up to 85% forD. mexicanumand up to 75% forE. thouarsii). The Stable Isotope Bayesian Ellipses in R (SIBER) analysis results indicated less interspecific competition in the undisturbed site. Our results suggested a trophic niche partitioning between sympatric sea urchin species in coastal areas of the ETP, but the limitation of resources could lead to trophic overlap and stronger habitat degradation.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 556
Author(s):  
Luis Miguel Pardo ◽  
Claudia Andrade ◽  
Lisette Zenteno-Devaud ◽  
Bastián Garrido ◽  
Cristóbal Rivera

The southern king crab, Lithodes santolla, is a well-known predator/scavenger species during its adult phase but its feeding strategy in early stages is less studied. This information is important to understand their role in ecosystems and to improve fishery management (i.e., stock enhancement). Based on stomach contents and stable isotope analysis, we determined variation in the composition of diet and niche overlap in vagile and cryptic phase collected within and outside a kelp forest, Macrocystis pyrifera, of Aguila Bay at the Magellan Strait in Patagonia, Chile. Results of juvenile stomach content analysis showed 60% dissimilarity between cryptic and vagile juvenile phases. Algae dominated the volumetric contribution in cryptic juveniles while crustacean dominated the diet in vagile phase. Exoskeleton of other king crabs occurred in 43% of juveniles with crustaceans in their stomach. This fact confirms cannibalistic behavior in the wild in this species, which is consistent with findings in massive laboratory cultures. There was no evidence of isotopic niche shift between cryptic and vagile juvenile phases. Overlapping isotopic niches of different-sized juveniles suggest that they exploit similar food resources. However, vagile individuals occupy a higher trophic position than cryptic individuals, which could suggest a switch in dietary preference, from detritivorous/herbivory within kelp forests to omnivory outside of kelp forests, and an increase in the level of cannibalism in vagile juveniles.


2021 ◽  
Author(s):  
Sara F Nunes ◽  
Mário Mota-Ferreira ◽  
Marta Sampaio ◽  
Joana Andrade ◽  
Nuno Oliveira ◽  
...  

Abstract Invasive species are a major threat to island biodiversity, and their eradications have substantially contributed to the conservation of island endemics. However, the consequences of eradications on the trophic ecology of native taxa are largely unexplored. Here, we used the eradication of invasive black rats Rattus rattus and European rabbits Oryctolagus cuniculus from the Berlenga Island, in the western coast of Portugal, as a whole-ecosystem experiment to investigate the effects of the eradication of invasive mammals on the trophic niche and body dimensions of the island-restricted Berlenga wall lizard Podarcis carbonelli berlengensis over a 2-year period. Our results suggest an expansion of the isotopic niche and an intensification of the sexual dimorphism of the lizard following mammal eradication. Additionally, we found considerable variability in isotopic niche across the island and detected evidence of sex-specific and season-modulated nutritional requirements of this threatened reptile. Our findings support that the eradication of two of the planet’s most problematic invasive vertebrates led to changes in the lizard trophic niche and sexual dimorphism in just two years. This suggests that the ecological pressures—e.g., prey availability and habitat structure—to which lizards are exposed have substantially changed post-eradication. Our study emphasizes the scientific value of island eradications as experiments to address a wide range of ecological questions and adds to the increasing body of evidence supporting substantial conservation gains associated with these restoration interventions.


2019 ◽  
Vol 97 (9) ◽  
pp. 763-772 ◽  
Author(s):  
Jacob Burbank ◽  
Mary Finch ◽  
D. Andrew R. Drake ◽  
Michael Power

Niche specificity can predispose species to population declines during periods of resource limitation, yet trophic niche specificity is poorly known for many small-bodied freshwater fishes. Applying a two-tiered approach involving stomach content and stable isotope analyses, we examined the diet and trophic niche of the threatened eastern sand darter (Ammocrypta pellucida (Putnam, 1863)) and co-occurring fishes in the Thames River, Ontario, Canada. As with previous studies, stomach content analysis revealed that eastern sand darter consumed a variety of benthic organisms including Chironomidae, Cladocera, Ostracoda, Oligochaeta, and Ephemeroptera; however, proportional contributions of prey groups differed based on stable isotope analysis, highlighting the potential for seasonal variation in prey consumption. Despite evidence of a generalist strategy, stable isotope analysis indicated eastern sand darter exhibited a relatively narrow trophic niche relative to co-occurring fishes. Trophic niche overlap was relatively minor between eastern sand darter and drift-feeding fishes (spotfin shiner (Cyprinella spiloptera (Cope, 1867)), emerald shiner (Notropis atherinoides Rafinesque, 1818), and buffalo sp. (genus Ictiobus Rafinesque, 1820)), but was more evident between eastern sand darter and benthic and benthopelagic fishes (johnny darter (Etheostoma nigrum Rafinesque, 1820) and blackside darter (Percina maculata (Girard, 1859))), indicating that competition with these species may be more likely during periods of prey scarcity.


2019 ◽  
Vol 97 (10) ◽  
pp. 904-913
Author(s):  
Cristian Marinao ◽  
Nicolás Suárez ◽  
Pablo Yorio

Many closely related seabirds nest in mixed colonies, and this association may result in interspecific interactions such as competition for common resources and kleptoparasitism. Trophic interactions were evaluated between the Kelp Gull (Larus dominicanus Lichtenstein, 1823) and Royal and Cayenne terns (Thalasseus maximus maximus (Boddaert, 1783) and Thalasseus sandvicensis eurygnathus (Saunders, 1876), respectively) nesting at a mixed-species colony in an area with high availability of recreational fishery waste for the opportunistic Kelp Gull. Diet analyses were based on gull chick stomach content samples and direct observations of food delivered to tern chicks in 2013 and 2014, complemented in 2014 with carbon and nitrogen stable isotope analysis of chick whole-blood samples. Main prey species of Kelp Gull chicks were Cynoscion guatucupa (Cuvier, 1830), a demersal species obtained from recreational fishery waste, Argentine anchovies (Engraulis anchoita Hubbs and Marini, 1935), and insects. Engraulis anchoita and Odontesthes spp. were the main prey of both tern species. Trophic niche and isotopic niche overlap between the Kelp Gull and Royal and Cayenne terns was low. Kelp Gull kleptoparasitism on Royal and Cayenne terns was ≤2.5% and <0.6%, respectively. The use of anthropogenic food subsidies by Kelp Gulls may be mediating the trophic relationships among species, favouring their use of predictable and abundant fishery waste over a more unpredictable pelagic schooling fish such as E. anchoita.


2021 ◽  
pp. 1-9
Author(s):  
Jeszianlenn L. Plaza ◽  
Ephrime B. Metillo ◽  
Marites B. Sanguila

Abstract We investigated trophic resource partitioning in seven syntopic anurans from low- and mid-elevation stream habitats of a tropical riparian ecosystem by utilising stomach content analysis (SCA) and stable isotope analysis (SIA). Our SCA data revealed dietary similarities, narrow trophic niche breadth, and low dietary niche overlap in Ansonia muelleri, Limnonectes magnus, Occidozyga laevis, Megophrys stejnegeri, Pulchrana grandocula, Sanguirana mearnsi, and Staurois natator which could be attributed to these anurans’ selection of available local prey items. We confirmed ant-specialisation (myrmecophagy) of the Mindanao island endemic bufonid A. muelleri based on our temporal SCA dietary data. Our SIA estimates of assimilation of potential prey sources confirmed that L. magnus, P. grandocula, and O. laevis are generalist predators, opportunistically feeding on locally abundant insect prey items. This study on trophic resource partitioning in syntopic anurans provides the first picture of trophic interactions, i.e., predation and competition in stream communities in tropical riparian zones of a watershed ecosystem in northeast Mindanao of the southern Philippines.


Sign in / Sign up

Export Citation Format

Share Document