scholarly journals Attributes of the soil fertilized with sewage sludge and calcium and magnesium silicate

Author(s):  
Geraldo R. Zuba Junio ◽  
Regynaldo A. Sampaio ◽  
Altina L. Nascimento ◽  
Luiz A. Fernandes ◽  
Natália N. de Lima ◽  
...  

ABSTRACTThis study aimed to evaluate the chemical attributes of an Inceptisol cultivated with castor bean (Ricinus communis L.), variety ‘BRS Energia’, fertilized with sewage sludge compost and calcium (Ca) and magnesium (Mg) silicate. The experiment was conducted at the ICA/UFMG, in a randomized block design, using a 2 x 4 factorial scheme with three replicates, and the treatments consisted of two doses of Ca-Mg silicate (0 and 1 t ha-1) and four doses of sewage sludge compost (0, 23.81, 47.62 and 71.43 t ha-1, on dry basis). Soil organic matter (OM), pH, sum of bases (SB), effective cation exchange capacity (CEC(t)), total cation exchange capacity (CEC(T)), base saturation (V%) and potential acidity (H + Al) were evaluated. There were no significant interactions between doses of sewage sludge compost and doses of Ca-Mg silicate on soil attributes, and no effect of silicate fertilization on these attributes. However, fertilization with sewage sludge compost promoted reduction in pH and increase in H + Al, OM and CEC. The dose of 71.43 t ha-1 of sewage sludge compost promoted the best soil chemical conditions.

Author(s):  
Hermann C. de Albuquerque ◽  
Geraldo R. Zuba Junio ◽  
Regynaldo A. Sampaio ◽  
Luiz A. Fernandes ◽  
Fabiano B. S. Prates ◽  
...  

ABSTRACTThis study aimed to evaluate the residual effect of sewage sludge fertilization on yield and nutrition of sunflower in its second cycle. The experiment was carried out from April to August 2012. The treatments consisted of four doses of sewage sludge (0, 10, 20 and 30 t ha-1, dry basis) applied in the first cycle of sunflower, distributed in a randomized block design, with six replicates. Sunflower stem diameter, plant height, capitulum diameter and yield increased with the increment in sewage sludge doses, with maximum values observed with the dose of 30 t ha-1. The contents of calcium and magnesium in the soil, pH, sum of bases, effective and potential cation exchange capacity and base saturation increased, while potential acidity and the contents of manganese and iron in the leaves decreased, with the increment in the residual doses of sewage sludge. There was a reduction in yield and growth characteristics of sunflower in the second cycle; thus, additional fertilization with sewage sludge is recommended in each new cycle.


2019 ◽  
Vol 20 (12) ◽  
Author(s):  
BERHANU ABRAHA TSEGAY ◽  
Berhane G. Gebreegziabher

Abstract. Tsegay BA, Gebreegziabher BG. 2019. Effects of terrains’ soil and altitude on performance of Abyssinian pea (Pisum sativum var. abyssinicum A.Braun) landraces of Ethiopia. Biodiversitas 20: 3467-3477. Pea production in Ethiopia is mainly located in the highlands. Field-based agronomic performance evaluation of Abyssinian pea landraces at different altitudes and soil types are rarely explored. This study was conducted to assess the effects of soil composition and altitude on morphological and yield traits of three landraces. The experimental investigation used was a completely randomized block design. Morphological and yield traits of the landraces considered in this study varied across agroecology. The variations were due to soil nutrient differences, altitude of the agroecology and their interactions. Soil samples collected from the mid-altitude had the highest pH of 7.71±0.07. Cation exchange capacity of this soil was found to be 45.46±0.71, in covenant with the approximate cation exchange capacity of most soils (>40 CEC meq/100 g soil) around neutral pH. This agroecology was found to be best for overall performance of the landraces. In the highland terrain, the landraces were less vigorous and shorter in height. In the lowland terrain, landraces were taller in height but gave low yield. Gedober 2017 landrace performed best in seed yield (6.00±0.11g/plant) and harvest index (0.32±0.43) at the mid-altitude. From this study, farmers are mindful to cultivate Gedober 2017 landrace at midland and highland pea production potential areas of Ethiopia.


Bragantia ◽  
2014 ◽  
Vol 73 (3) ◽  
pp. 312-318 ◽  
Author(s):  
Janaina Braga Carmo ◽  
Danilo Ignácio de Urzedo ◽  
Pedro José Ferreira Filho ◽  
Elisabete Alves Pereira ◽  
Leonardo Machado Pitombo

This study aimed to quantify the carbon dioxide emissions from an Oxisol under degraded pasture located in Sorocaba, São Paulo State, Brazil. The treatments were: sewage sludge (LE), sewage sludge compost (CLE), mineral fertilizer (AM) and no fertilization (T0). The experiment was conducted in a completely randomized block design with analysis of the effect of the four treatments (CLE, LE, and AM T0) with four replications. The application of sewage sludge, sewage sludge compost, mineral fertilizer and no fertilizer was statistically significant for the variables of height increase and stem height of Guanandi seedlings (Calophyllum brasiliense Cambessèdes - Calophyllaceae). Treatments showed significant differences in terms of CO2 emissions from soil. The CLE exhibited the highest CO2 fluxes, reaching a peak of 9.33±0.96 g C m- 2 day- 1 (p<0.0001), as well as the LE with a maximum CO2 flux of 6.35±1.17 C m- 2 day- 1 (p<0.005). The AM treatment (4.96±1.61 g C m- 2 day- 1) had the same statistical effect as T0 (5.33±0.49 g C m- 2 day- 1). CO2 fluxes were correlated with soil temperature in all treatments. However, considering the period of 172 days of evaluation, the total loss of C as CO2 was 2.7% for sewage sludge and 0.7% for the sewage sludge compost of the total C added with the application on soil.


2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4071 ◽  
Author(s):  
Marcos Vinícius Mansano Sarto ◽  
Maria do Carmo Lana ◽  
Leandro Rampim ◽  
Jean Sérgio Rosset ◽  
Jaqueline Rocha Wobeto

<p>An improvement in soil chemical properties and crop development with silicate application has been confirmed in several plant species. The effects of silicate application on soil chemical properties and wheat growth were investigated in the present study. The experiment was carried out in 8-L plastic pots in a greenhouse. Treatments were arranged in a randomized block design in a 3 × 5 factorial: three soils [Rhodic Acrudox (Ox1), Rhodic Hapludox (Ox2) and Arenic Hapludult (Ult)] and five silicate rates (0, 1, 2, 4 and 6 Mg ha–1 of calcium/magnesium silicate), with four replications. The plant length, number of spikes per pot, shoot dry matter and grain yield, were measured after 115 days of wheat (<em>Triticum aestivum </em>L.) growth. Changes in the soil chemical properties (pH, H+ + Al3+, Al3+, P, K, Ca, Mg, Si, Cu, Zn, Fe and Mn) were analyzed after wheat harvest. Application of calcium/magnesium silicate reduces the potential acidity (H+ + Al3+) and Al3+ phytotoxic; and increases the soil pH, available Ca, Mg and Si, cation exchange capacity (CEC) and soil base saturation. Silicate application did not affect the available P, exchangeable K and availability of micronutrients (Cu, Zn, Fe and Mn) in the three soils. The application of calcium/magnesium silicate in an acid clayey Rhodic Hapludox improves the development and yield of wheat; however, the silicate application in soil with pH higher to 5.3 and high Si availability does not affect the agronomic characteristics and grain yield of wheat.</p><p><strong> </strong></p>


2007 ◽  
Vol 56 (2) ◽  
pp. 187-192 ◽  
Author(s):  
M.A. Bustamante ◽  
C. Paredes ◽  
R. Moral ◽  
J. Moreno-Caselles ◽  
M.D. Pérez-Murcia ◽  
...  

The winery and distillery wastes (grape stalk and marc (GS and GM, respectively), wine lees (WL) and exhausted grape marc (EGM)) are produced in great amounts in the Mediterranean countries, where their treatment and disposal are becoming an important environmental problem, mainly due to their seasonal character and some characteristics that make their management difficult and which are not optimised yet. Composting is a treatment widely used for organic wastes, which could be a feasible option to treat and recycle the winery and distillery wastes. In this experiment, two different piles (pile 1 and 2) were prepared with mixtures of GS, GM, EG and sewage sludge (SS) and composted in a pilot plant by the Rutgers static pile composting system. Initially, GS, GM and EGM were mixed, the pile 1 being watered with fresh collected vinasse (V). After 17 days, SS was added to both piles as a nitrogen and microorganisms source. During composting, the evolution of temperature, pH, electrical conductivity, total organic C, total N, humic acid-like C and fulvic acid-like C contents, C/N ratio, cation exchange capacity and germination index of the mixtures were studied. The addition of V in pile 1 produced higher values of temperature, a greater degradation of the total organic C, higher electrical conductivity values and similar pH values and total N contents than in pile 2. The addition of this effluent also increased the cation exchange capacity and produced a longer persistence of phytotoxicity. However, both piles showed a stabilised organic matter and a reduction of the phytotoxicity at the end of the composting process.


CORD ◽  
1988 ◽  
Vol 4 (01) ◽  
pp. 34
Author(s):  
Doah Dekok Tarigans

This study was conducted to investigate the effects of six co­conut cropping patterns on the soil properties and nutrient element status of coconut leaves. The experiments were carried out from August 1984 to May 1985 in Silang, Cavite, Philippines. Data on‑soil properties and nutrient element starus of coconut leaves were statistically analyzed in Randomized Block Design with three replications. Six cropping patterns in coconut with four species of perennial crops as intercrops, namely: banana, papaya, coffee and pineapple were used in this study. The organic matter, pH and cation exchange capacity of the soils did not differ significantly with cropping pattern although intensively cropped farms tended to have higher organic matter' and cation exchange capacity values. Nitrogen, phosphorus and potassium in the top soil were significantly higher in most intensive intercropped farms, but calcium and magnesium did not vary significantly. Moisture content, waterholding capacity, bulk density and particle density of the soil did not show significant difference with cropping patterns. Likewise, the number of bacteria, fungi and actinomycetes in the soil remained statistically the same. Leaf nitrogen and calcium, in­creased while potassium decreased with intensity of cropping. Phosphorus and magnesium showed no definite trend.


2019 ◽  
Vol 11 (6) ◽  
pp. 460
Author(s):  
Alves A. Alovisi ◽  
Munir Mauad ◽  
Alessandra M. T. Alovisi ◽  
Luciene K. Tokura ◽  
Robervaldo S. Silva ◽  
...  

The serpentinite is an alternative for the correction of soil acidity and is composed of calcium and magnesium silicate. The objective of this study was to evaluate the residual effect of the serpentinite application on soil chemical attributes and the effects on wheat crop productivity in a no-tillage system. The experimental design was a randomized block design, in a subdivided plot scheme, with four replications. The plots were constituted by serpentinite doses (0, 2, 4, 8 and 16 Mg ha-1) and in the subplots the soil collection layers (0.0-0.10 and 0.10-0.20 m). The chemical attributes of the soil evaluated at 41 months after the application of serpentinite, presented favorable results of the residual power of this corrective. The main results observed are related to the increase of pH, decrease of aluminum content and potential acidity, and increase of Ca, Mg and Si contents, cation exchange capacity (CTC) and base saturation. The residual of the serpentinite in the soil contributed with an improvement in the chemical attributes of the soil, which favored the increase of the dry mass, number of spikes and yield of the wheat crop.


SoilREns ◽  
2016 ◽  
Vol 14 (1) ◽  
Author(s):  
Rija Sudirja ◽  
Santi Rosniawaty ◽  
Ade Setiawan ◽  
Rhendika Indra Yunianto

One of the factors inhibiting the production of rice is not efficient in the use of fertilizers and ecosystem damage due to toxic hazardous materials such as heavy metals. the use of Urea, Zeolite, Activated charcoal based fertilizer is expected to increase the production of paddy rice crops in rice fields heavy metal contaminated. The experiment was conducted in the village of the District Linggar Rancaekek Regency  Bandung from  March  to  May  2015.  The experiment  used  randomized  block design with four single  treatment,  that  is  A =  urea  : zeolite  (95:5),  B  =  urea  : zeolite  : activated charcoal (50:45:5), C = urea : zeolite : activated charcoal (50:25:25), D = urea : zeolite (60:40), each with  five replicates.  Rice  varieties  used are Inpari  30.  The  results  showed  that  administration RS fertilizer formula  is  proven to  reduce  the  solubility  of  approximately  30%  Pb  and increases  the cation exchange capacity  (CEC) of  the soil.  RS fertilizer no  real  effect  on pH and N-Total  soils. Formulation urea : zeolite : activated charcoal (50:25:25) can decrease the solubility of Pb, while the CEC best demonstrated by the increase in formulation urea : zeolite : activated charcoal (50: 45: 5). Key words: heavy metals, RS fertilizer, wetland rice 


2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4071
Author(s):  
Marcos Vinícius Mansano Sarto ◽  
Maria Do Carmo Lana ◽  
Leandro Rampim ◽  
Jean Sérgio Rosset ◽  
Jaqueline Rocha Wobeto

An improvement in soil chemical properties and crop development with silicate application has been confirmed in several plant species. The effects of silicate application on soil chemical properties and wheat growth were investigated in the present study. The experiment was carried out in 8-L plastic pots in a greenhouse. Treatments were arranged in a randomized block design in a 3 × 5 factorial: three soils [Rhodic Acrudox (Ox1), Rhodic Hapludox (Ox2) and Arenic Hapludult (Ult)] and five silicate rates (0, 1, 2, 4 and 6 Mg ha–1 of calcium/magnesium silicate), with four replications. The plant length, number of spikes per pot, shoot dry matter and grain yield, were measured after 115 days of wheat (Triticum aestivum L.) growth. Changes in the soil chemical properties (pH, H+ + Al3+, Al3+, P, K, Ca, Mg, Si, Cu, Zn, Fe and Mn) were analyzed after wheat harvest. Application of calcium/magnesium silicate reduces the potential acidity (H+ + Al3+) and Al3+ phytotoxic; and increases the soil pH, available Ca, Mg and Si, cation exchange capacity (CEC) and soil base saturation. Silicate application did not affect the available P, exchangeable K and availability of micronutrients (Cu, Zn, Fe and Mn) in the three soils. The application of calcium/magnesium silicate in an acid clayey Rhodic Hapludox improves the development and yield of wheat; however, the silicate application in soil with pH higher to 5.3 and high Si availability does not affect the agronomic characteristics and grain yield of wheat. An improvement in soil chemical properties and crop development with silicate application has been confirmed in several plant species. The effects of silicate application on soil chemical properties and wheat growth were investigated in the present study. The experiment was carried out in 8-L plastic pots in a greenhouse. Treatments were arranged in a randomized block design in a 3 × 5 factorial: three soils [Rhodic Acrudox (Ox1), Rhodic Hapludox (Ox2) and Arenic Hapludult (Ult)] and five silicate rates (0, 1, 2, 4 and 6 Mg ha–1 of calcium/magnesium silicate), with four replications. The plant length, number of spikes per pot, shoot dry matter and grain yield, were measured after 115 days of wheat (Triticum aestivum L.) growth. Changes in the soil chemical properties (pH, H+ + Al3+, Al3+, P, K, Ca, Mg, Si, Cu, Zn, Fe and Mn) were analyzed after wheat harvest. Application of calcium/magnesium silicate reduces the potential acidity (H+ + Al3+) and Al3+ phytotoxic; and increases the soil pH, available Ca, Mg and Si, cation exchange capacity (CEC) and soil base saturation. Silicate application did not affect the available P, exchangeable K and availability of micronutrients (Cu, Zn, Fe and Mn) in the three soils. The application of calcium/magnesium silicate in an acid clayey Rhodic Hapludox improves the development and yield of wheat; however, the silicate application in soil with pH higher to 5.3 and high Si availability does not affect the agronomic characteristics and grain yield of wheat.


2020 ◽  
Vol 116 (2) ◽  
pp. 253
Author(s):  
Mariani SEMBIRING ◽  
Tengku SABRINA ◽  
Mukhlis MUKHLIS

<p>Andisol soil contains a lot of heavy metals Al and Fe, which results in P being unavailable to plants and can cause low soil pH, this will inhibit plant growth. One effort that can be made to increase the availability of nutrients in the soil is by utilizing soil enhancing ingredients enriched with biological fertilizers. The research design used was factorial randomized block design (RBD) consisting of: Factor I: (biological fertilizers) M0 = without application, M1 = <em>Talaromyces pinophilus </em>(Hedgecock), M2 = <em>Azotobacter</em> sp, M3 = Mycorrhizae, M4 = <em>Talaromyces pinophilus</em> + mycorrhizae + <em>Azotobacter </em>sp. Factor II Soil enhancing ingredients, namely P0 = Without Soil Improvement, K1 = Zeolite 50 g, K2 = Humic acid 50 ml, K3 = compost / manure fertilizer for agriculture 50 g. From the results the combination of microbial treatment and soil conditioner can increase nitrogen in the soil by 2-40.81 %, cation exchange capacity by 1.7-44.29 % and P available by 1.3-49.36 %. Soil conditioner combined with biological fertilizers can improve soil quality in general, the best treatment is a combination treatment of <em>T.</em> <em>pinophilus</em> + mycorrhizae + <em>Azotobacter </em>sp. with coffee skin (M4P4).</p>


Sign in / Sign up

Export Citation Format

Share Document