scholarly journals Organomineral fertilizer as an alternative for increasing potato yield and quality

Author(s):  
Darlaine M. Ferreira ◽  
Tiyoko N. H. Rebouças ◽  
Risely Ferraz-Almeida ◽  
John S. Porto ◽  
Roberta C. Oliveira ◽  
...  

ABSTRACT Organomineral fertilizer has great potential to replace synthetic fertilizers. The goal of this study was to determine an optimal substitution rate of organomineral fertilizer for mineral fertilizer to increase potato yield and quality. The experimental design was a randomized complete block with four replicates and six treatments, namely four substitution rates of organomineral fertilizer application (25, 50, 75, and 100% of mineral fertilizer demand), one rate of mineral fertilizer application (100% of mineral fertilizer demand), and the control (no fertilizer application). The organomineral application rates were tested as an alternative to substitute 25 to 100% of mineral fertilizer. The potato yield (total and in-class) and quality and plant and soil nutrient contents were monitored. The pH and total soluble solid contents had positive correlations with yield. Potatoes accumulated higher contents of K > N > P in the leaves, stems, and tubers. The organomineral fertilizer application rate of 3.7 t ha-1 (equivalent to 100% of mineral fertilizer demand) was the optimal rate to increase potato yield and quality. Organomineral fertilizer is a viable alternative to increase potato quality and yield and to increase plant and soil nutrient contents.

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247578
Author(s):  
Qing-Jie Du ◽  
Huai-Juan Xiao ◽  
Juan-Qi Li ◽  
Jia-Xin Zhang ◽  
Lu-Yao Zhou ◽  
...  

To select the optimum fertilizer application under specific irrigation levels and to provide a reliable fertigation system for tomato plants, an experiment was conducted by using a microporous membrane for water-fertilizer integration under non-pressure gravity. A compound fertilizer (N:P2O5:K2O, 18:7:20) was adopted for topdressing at four levels, 1290 kg/ha, 1140 kg/ha, 990 kg/ha, and 840 kg/ha, and the locally recommended level of 1875 kg/ha was used as the control to explore the effects of different fertilizer application rates on growth, nutrient distribution, quality, yield, and partial factor of productivity (PFP) in tomato. The new regime of microporous membrane water-fertilizer integration under non-pressure gravity irrigation reduced the fertilizer application rate while promoting plant growth in the early and intermediate stages. Except for the 990 kg/ha fertilizer treatment, yields per plant and per plot for each fertilizer application rate were higher than or equal to those of the control. The new regime could effectively improve PFP and reduce soil nutrient enrichment. Fertilizer at 840 kg/ha showed the optimum results by increasing PFP by 75.72% as compared to control. In conclusion, the fertilizer rate at 840 kg/ha has not only maintained the productivity of soil but also tomato growth and quality of fruit which makes the non-pressure gravity irrigation a potential and cost-effective way for fertilizer application.


2021 ◽  
Vol 193 (9) ◽  
Author(s):  
Naser Miran ◽  
Mir Hassan Rasouli Sadaghiani ◽  
Vali Feiziasl ◽  
Ebrahim Sepehr ◽  
Mehdi Rahmati ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2257
Author(s):  
Rajan Bhatt ◽  
Jagdish Singh ◽  
Alison M. Laing ◽  
Ram Swaroop Meena ◽  
Walaa F. Alsanie ◽  
...  

Groundwater and soil potassium deficiencies are present in northern India. Sugarcane is a vital crop in the Indian Punjab; it is grown on approximately 91,000 hectares with an average yield of 80 tonnes ha−1 and a sugar recovery rate of 9.59%. The role of potassium (K) fertilizer under both sufficient and deficient irrigation in ratoon sugarcane crops is not well documented. We conducted a split-plot ratoon cane experiment during 2020–2021 at the Gurdaspur Regional Research Station of Punjab Agricultural University, India, on K-deficient soils. Main treatments were fully irrigated (I1) and water stressed (I0) conditions, with sub-treatments reflecting K fertilizer application rates of 0 (M1), 67 (M2), 133 (M3), and 200 (M4) kg K ha−1. The ratoon sugarcane performance was assessed in terms of growth, productivity, sugar quality and incidence of key insect pests. At harvest, trends in the growth and yield parameters in I1 were improved over the I0 treatment, with cane height (+12.2%), diameter (+3.3%), number of internodes (+5.4%), biomass yield (+7.6%) and cane yield (+5.9%) all higher, although little significant difference was observed between treatments. Ratoon cane yield under irrigation was 57.1 tonnes ha−1; in water-stressed conditions, it was 54.7 tonnes ha−1. In terms of sugarcane quality parameters, measured 12 months after harvesting the initial seed crop, values of Brix (+3.6%), pol (+3.9%), commercial cane sugar percentage (+4.0%) and extractable sugar percentage (+2.8%) were all higher in the irrigated treatments than the water-stressed plot. Irrigated treatments also had a significantly lower incidence of two key insect pests: top borer (Scirpophaga excerptalis) was reduced by 18.5% and stalk borer (Chilo auricilius) by 21.7%. The M3 and M4 treatments resulted in the highest cane yield and lowest incidence of insect pests compared to other K-fertilizer treatments. Economic return on K-fertilizer application increased with increasing fertilizer dosage. Under the potassium-deficient water-stressed conditions of the region of north India, a fertilizer application rate of 133 kg K ha−1 is recommended to improve ratoon sugarcane growth, yield, and quality parameters and economic returns for sugarcane farmers.


Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 351
Author(s):  
Aiguo Duan ◽  
Jie Lei ◽  
Xiaoyan Hu ◽  
Jianguo Zhang ◽  
Hailun Du ◽  
...  

Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is a fast-growing evergreen conifer with high-quality timber and is an important reforestation and commercial tree species in southern China. Planting density affects the productivity of Chinese fir plantations. To study the effect of five different planting densities and soil depth on soil nutrient contents of a mature C. lanceolata plantation, the soil nutrient contents (soil depths 0–100 cm) of 36-year-old mature Chinese fir plantations under five different planting densities denoted A (1667 trees·ha−1), B (3333 trees·ha−1), C (5000 trees·ha−1), D (6667 trees·ha−1), and E (10,000 trees·ha−1) were measured in Pingxiang county, Guangxi province, China. Samples were collected from the soil surface down to a one meter depth from each of 45 soil profiles, and soil samples were obtained at 10 different soil depths of 0–10, 10–20, 20–30, 30–40, 40–50, 50–60, 60–70, 70–80, 80–90, and 90–100 cm. Twelve soil physical and chemical indicators were analyzed. The results showed that: (1) as planting density increased, the organic matter, organic carbon, total N and P, available N, effective Fe, and bulk density decreased. Soil pH, total K, and effective K increased with increasing planting density. Planting density did not significantly influence the exchangeable Ca and Mg. (2) Soil organic matter; organic carbon; total N and P; effective N, P, and K; exchangeable Ca and Mg; effective Fe content; and bulk density decreased with increasing soil depth. This pattern was particularly evident in the top 30 cm of the soil. (3) Excessively high planting density is not beneficial to the long-term maintenance of soil fertility in Chinese fir plantations, and the planting density of Chinese fir plantations should be maintained below 3333 stems·ha−1 (density A or B) to maintain soil fertility while ensuring high yields.


2019 ◽  
Vol 11 (4) ◽  
pp. 1165 ◽  
Author(s):  
Haixia Wu ◽  
Yan Ge

This paper takes 516 households who planted wheat in Heyang County, Shaanxi Province in 2018, as samples to construct three policy environments: Technological guidance for planting, subsidies for organic fertilizer application, and agricultural tailwater discharge standards. The experimental choice method was used to empirically analyze policy preferences during the process of fertilizer reduction. The results indicate that households show different preferences for the three policy settings: The fertilizer application rate is reduced by 6.98% if providing full technological guidance for farmers throughout the wheat planting process and is reduced by 5.18% under the background of providing appropriate organic fertilizer subsidies. The agricultural tailwater discharge standards have the least impact on the reducing level of chemical fertilizer application, with decreasing amounts of only 1.85% and 0.77% under the second-level and the first-level agricultural tailwater discharge standards, respectively. These results indicate that households in Heyang County, Shaanxi Province, demonstrate a low willingness to accept the agricultural tailwater discharge standards in order to cut down on the amount of chemical fertilizer application and the agricultural non-point source pollution. Therefore, compared with a compounded annual growth rate (CAGR) of 1% of fertilizer usage nationwide according to the Chinese Ministry of Agriculture, given the current planting environment and policies design, providing comprehensive technological guidance as well as price subsidies for the organic fertilizer can significantly and robustly reduce the excessive application of fertilizer in Heyang County, Shaanxi Province, under the best scenario, thereby further alleviating agricultural non-point source pollution.


2002 ◽  
Vol 94 (6) ◽  
pp. 1393-1399 ◽  
Author(s):  
Nathan A. Slaton ◽  
Charles E. Wilson ◽  
Richard J. Norman ◽  
Sixte Ntamatungiro ◽  
Donna L. Frizzell

2020 ◽  
Vol 12 (11) ◽  
pp. 4691
Author(s):  
Helder Zavale ◽  
Greenwell Matchaya ◽  
Delfim Vilissa ◽  
Charles Nhemachena ◽  
Sibusiso Nhlengethwa ◽  
...  

Mozambique is characterized by low agricultural productivity, which is associated with low use of yield-enhancing agricultural inputs. Fertilizer application rate averaged 5.7 kg ha−1 in Mozambique during the period 2006 to 2015, considerably low by regional targets, yet constraints that affect fertilizer use have not been thoroughly investigated. This study examined the constraints on fertilizer value chains in Mozambique to contribute to fertilizer supply chain strengthening. We used a combination of multivariate analysis and descriptive methods. Our findings indicate that fertilizer use has both demand and supply constraints. Key demand-side constraints include liquidity challenges, limited awareness about the benefits of using fertilizer, and low market participation, while the main supply-side constraints include high transaction costs, limited access to finance, and lack of soil testing results and corresponding fertilizer recommendations by soil type and crop uptake. These results suggest that scaling up the input subsidy program through vouchers (either paper-based vouchers or e-vouchers) with demonstration plots and effective targeting could drive up smallholders’ demand for fertilizer and fertilizer supply by strengthening a sustainable network of wholesalers and retailers. This would likely boost agricultural productivity.


2006 ◽  
Vol 70 (1) ◽  
pp. 235-248 ◽  
Author(s):  
R. F. Grant ◽  
E. Pattey ◽  
T. W. Goddard ◽  
L. M. Kryzanowski ◽  
H. Puurveen

Sign in / Sign up

Export Citation Format

Share Document