1962 ◽  
Vol 12 (3) ◽  
pp. 367-387 ◽  
Author(s):  
D. M. Sykes

The flow past circular cylinders of finite length, supported at one end and lying with their axes perpendicular to a uniform stream, has been investigated in a supersonic stream at Mach number 1.96 and also in a low-speed stream. In both stream it was found that the flow past the cylinders could be divided into three regions: (a) a central region, (b) that near the free end of the cylinder, and (c) that near the supported end. The locations of the second and third regions were found to be almost independent of the cylinder length-to-diameter ratio, provided that this exceeded 4, while the flow within and the extent of the first region were dependent on this ratio. Form-drag coefficients determined in the central region in the supersonic flow were in close agreement with the values determined at the same Mach number by other workers. In the low-speed flow the local form-drag coefficients were dependent on length-to-diameter ratio and were always less than that of an infinite-length cylinder at the same Reynolds number.


2018 ◽  
Vol 11 (8) ◽  
pp. 3347-3368 ◽  
Author(s):  
Yurii Batrak ◽  
Ekaterina Kourzeneva ◽  
Mariken Homleid

Abstract. Sea ice is an important factor affecting weather regimes, especially in polar regions. A lack of its representation in numerical weather prediction (NWP) systems leads to large errors. For example, in the HARMONIE–AROME model configuration of the ALADIN–HIRLAM NWP system, the mean absolute error in 2 m temperature reaches 1.5 ∘C after 15 forecast hours for Svalbard. A possible reason for this is that the sea ice properties are not reproduced correctly (there is no prognostic sea ice temperature in the model). Here, we develop a new simple sea ice scheme (SICE) and implement it in the ALADIN–HIRLAM NWP system in order to improve the forecast quality in areas influenced by sea ice. The new parameterization is evaluated using HARMONIE–AROME experiments covering the Svalbard and Gulf of Bothnia areas for a selected period in March–April 2013. It is found that using the SICE scheme improves the forecast, decreasing the value of the 2 m temperature mean absolute error on average by 0.5 ∘C in areas that are influenced by sea ice. The new scheme is sensitive to the representation of the form drag. The 10 m wind speed bias increases on average by 0.4 m s−1 when the form drag is not taken into account. Also, the performance of SICE in March–April 2013 and December 2015–December 2016 was studied by comparing modelling results with the sea ice surface temperature products from MODIS and VIIRS. The warm bias (of approximately 5 ∘C) of the new scheme is indicated for areas of thick ice in the Arctic. Impacts of the SICE scheme on the modelling results and possibilities for future improvement of sea ice representation in the ALADIN–HIRLAM NWP system are discussed.


2021 ◽  
Author(s):  
Matej Sabo ◽  
◽  
Martin Bugaj

Higher awareness of aviation sustainability and environmental impact creates more research on profile drag reduction. The basic principles of aerodynamic profile drag are described and its role within the total drag. The boundary layer is defined using mathematical and physical principles of fluid dynamics. There are two types of movement inside the boundary layer: laminar and turbulent. In these, their impact on profile drag is analysed. The profile drag of a wing has two sources: form drag and friction drag. Applications with the most impact, throughout history, on both types of drag reductions were reviewed. Because most of the total drag comes from friction, researchers focus more on it compared to form drag. The significant way of reducing friction drag is postponing the transition of laminar flow into turbulent. The control of laminar flow became crucial for reducing friction drag. In the last two decades, European Union supported multiple projects concerning laminar flow control. These advancements in the field are starting to get implemented and tested on new aircraft by manufactures.


Author(s):  
François Lott ◽  
Bruno Deremble ◽  
Clément Soufflet

AbstractThe non-hydrostatic version of the mountain flow theory presented in Part I is detailed. In the near neutral case, the surface pressure decreases when the flow crosses the mountain to balance an increase in surface friction along the ground. This produces a form drag which can be predicted qualitatively. When stratification increases, internal waves start to control the dynamics and the drag is due to upward propagating mountain waves as in part I. The reflected waves nevertheless add complexity to the transition. First, when stability increases, upward propagating waves and reflected waves interact destructively and low drag states occur. When stability increases further, the interaction becomes constructive and high drag state are reached. In very stable cases the reflected waves do not affect the drag much. Although the drag gives a reasonable estimate of the Reynolds stress, its sign and vertical profile are profoundly affected by stability. In the near neutral case the Reynolds stress in the flow is positive, with maximum around the top of the inner layer, decelerating the large-scale flow in the inner layer and accelerating it above. In the more stable cases, on the contrary, the large-scale flow above the inner layer is decelerated as expected for dissipated mountain waves. The structure of the flow around the mountain is also strongly affected by stability: it is characterized by non separated sheltering in the near neutral cases, by upstream blocking in the very stable case, and at intermediate stability by the presence of a strong but isolated wave crest immediately downstream of the ridge.


2020 ◽  
Author(s):  
B. Mele ◽  
R. Tognaccini
Keyword(s):  

2021 ◽  
Vol 213 ◽  
pp. 104299
Author(s):  
Rachel M. Horwitz ◽  
Stephanne Taylor ◽  
Youyu Lu ◽  
Jean-Philippe Paquin ◽  
Douglas Schillinger ◽  
...  

2014 ◽  
Vol 44 (5) ◽  
pp. 1329-1353 ◽  
Author(s):  
Michel Tsamados ◽  
Daniel L. Feltham ◽  
David Schroeder ◽  
Daniela Flocco ◽  
Sinead L. Farrell ◽  
...  

Abstract Over Arctic sea ice, pressure ridges and floe and melt pond edges all introduce discrete obstructions to the flow of air or water past the ice and are a source of form drag. In current climate models form drag is only accounted for by tuning the air–ice and ice–ocean drag coefficients, that is, by effectively altering the roughness length in a surface drag parameterization. The existing approach of the skin drag parameter tuning is poorly constrained by observations and fails to describe correctly the physics associated with the air–ice and ocean–ice drag. Here, the authors combine recent theoretical developments to deduce the total neutral form drag coefficients from properties of the ice cover such as ice concentration, vertical extent and area of the ridges, freeboard and floe draft, and the size of floes and melt ponds. The drag coefficients are incorporated into the Los Alamos Sea Ice Model (CICE) and show the influence of the new drag parameterization on the motion and state of the ice cover, with the most noticeable being a depletion of sea ice over the west boundary of the Arctic Ocean and over the Beaufort Sea. The new parameterization allows the drag coefficients to be coupled to the sea ice state and therefore to evolve spatially and temporally. It is found that the range of values predicted for the drag coefficients agree with the range of values measured in several regions of the Arctic. Finally, the implications of the new form drag formulation for the spinup or spindown of the Arctic Ocean are discussed.


Sign in / Sign up

Export Citation Format

Share Document