scholarly journals Comparison of Retroviral Transduction Efficiency in CD34+Cells Derived from Bone Marrow versus G-CSF-Mobilized or G-CSF Plus Stem Cell Factor-Mobilized Peripheral Blood in Nonhuman Primates

Stem Cells ◽  
2004 ◽  
Vol 22 (6) ◽  
pp. 1062-1069 ◽  
Author(s):  
Peiman Hematti ◽  
Sascha Tuchman ◽  
Andre Larochelle ◽  
Mark E. Metzger ◽  
Robert E. Donahue ◽  
...  

Blood ◽  
2003 ◽  
Vol 101 (6) ◽  
pp. 2199-2205 ◽  
Author(s):  
Peiman Hematti ◽  
Stephanie E. Sellers ◽  
Brian A. Agricola ◽  
Mark E. Metzger ◽  
Robert E. Donahue ◽  
...  

Gene transfer experiments in nonhuman primates have been shown to be predictive of success in human clinical gene therapy trials. In most nonhuman primate studies, hematopoietic stem cells (HSCs) collected from the peripheral blood or bone marrow after administration of granulocyte colony-stimulating factor (G-CSF) + stem cell factor (SCF) have been used as targets, but this cytokine combination is not generally available for clinical use, and the optimum target cell population has not been systematically studied. In our current study we tested the retroviral transduction efficiency of rhesus macaque peripheral blood CD34+ cells collected after administration of different cytokine mobilization regimens, directly comparing G-CSF+SCF versus G-CSF alone or G-CSF+Flt3-L in competitive repopulation assays. Vector supernatant was added daily for 96 hours in the presence of stimulatory cytokines. The transduction efficiency of HSCs as assessed by in vitro colony-forming assays was equivalent in all 5 animals tested, but the in vivo levels of mononuclear cell and granulocyte marking was higher at all time points derived from target CD34+ cells collected after G-CSF+SCF mobilization compared with target cells collected after G-CSF (n = 3) or G-CSF+Flt3-L (n = 2) mobilization. In 3 of the animals long-term marking levels of 5% to 25% were achieved, but originating only from the G-CSF+SCF–mobilized target cells. Transduction efficiency of HSCs collected by different mobilization regimens can vary significantly and is superior with G-CSF+SCF administration. The difference in transduction efficiency of HSCs collected from different sources should be considered whenever planning clinical gene therapy trials and should preferably be tested directly in comparative studies.



Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4816-4816
Author(s):  
Stephen L Fischer ◽  
Jacqueline M Fonseca ◽  
Yukang Zhao ◽  
Linda L. Kelley ◽  
Ramasamy Sakthivel

Abstract Abstract 4816 Hematopoietic stem cell (HSC) transplantation has become the standard of care for patients with hematologic cancers, anemia, and a variety of other malignant and non-malignant disorders, with greater than 50,000 such procedures being performed globally each year, according to the Worldwide Network for Blood and Marrow Transplantation. Although mobilized peripheral blood (MPB) has become a preferred source of HSCs for transplants, bone marrow (BM) and umbilical cord blood (UCB) are also frequently utilized. Regardless of source, several groups have reported that grafts containing lower total nucleated cell (TNC) and CD34+ cell doses contribute to delayed engraftment and higher graft failure rate. Therefore, methods to increase the total cell number while maintaining the progenitor phenotype, especially the CD34+ progenitor cells, from individual grafts would have a significant clinical impact. Ex vivo expansion of HSCs prior to transplantation is one approach that offers tremendous promise for increasing cell doses and improving clinical outcomes. In many ex vivo culture systems, HSCs are cultured as a suspension cells and cultured in the presence of various media additives that act to enhance cell proliferation while reducing differentiation. An often-overlooked factor influencing fate decisions is the interaction of HSCs with a substrate. In the natural bone marrow microenvironment, HSCs maintain close contact with a complex network of stromal cells and extracellular matrix, likely indicating that cell-cell and cell-matrix interactions play an important role in maintaining their stem cell phenotype. With the goal of mimicking the bone marrow stem cell niche, Arteriocyte, Inc. has developed a 3-D NANEX nanofiber based cell culture substrate. The functionalized NANEX substrate is designed to provide topographical and substrate-immobilized biochemical cues that act in synergy with media additives to enhance HSC proliferation while maintain the progenitors stem cell phenotype. Here, we present our recent work with the NANEX platform towards comparing and achieving a high yield ex vivo expansion of CD34+ cells from MPB, BM, and UCB. Additionally, through the use of flow cytometry and CFU assays, we quantify and characterize NANEX-expanded cells from each source. Furthermore, we compared NANEX to a variety of commercially available products and demonstrate that NANEX significantly improves expansion and reduces phenotype loss during ex vivo culture. Our data indicates that NANEX technology provides a robust ex vivo expansion of HSCs and, with further GMP and clinical development, offers great potential for clinical applications. Disclosures: No relevant conflicts of interest to declare.



2000 ◽  
Vol 28 (3) ◽  
pp. 335-346 ◽  
Author(s):  
Karsten Kratz-Albers ◽  
Stefan Scheding ◽  
Robert Möhle ◽  
Hans J. Bühring ◽  
Charles M. Baum ◽  
...  




1998 ◽  
Vol 16 (8) ◽  
pp. 2601-2612 ◽  
Author(s):  
A Weaver ◽  
J Chang ◽  
E Wrigley ◽  
E de Wynter ◽  
P J Woll ◽  
...  

PURPOSE This was the first randomized study to investigate the efficacy of peripheral-blood progenitor cell (PBPC) mobilization using stem-cell factor (SCF) in combination with filgrastim (G-CSF) following chemotherapy compared with filgrastim alone following chemotherapy. PATIENTS AND METHODS Forty-eight patients with ovarian cancer were treated with cyclophosphamide and randomized to receive filgrastim 5 microg/kg alone or filgrastim 5 microg/kg plus SCF. The dose of SCF was cohort-dependent (5, 10, 15, and 20 microg/kg), with 12 patients in each cohort, nine of whom received SCF plus filgrastim and the remaining three patients who received filgrastim alone. On recovery from the WBC nadir, patients underwent a single apheresis. RESULTS SCF in combination with filgrastim following chemotherapy enhanced the mobilization of progenitor cells compared with that produced by filgrastim alone following chemotherapy. This enhancement was dose-dependent for colony-forming unit-granulocyte-macrophage (CFU-GM), burst-forming unit-erythrocyte (BFU-E), and CD34+ cells in both the peripheral blood and apheresis product. In the apheresis product, threefold to fivefold increases in median CD34+ and progenitor cell yields were obtained in patients treated with SCF 20 microg/kg plus filgrastim compared with yields obtained in patients treated with filgrastim alone. Peripheral blood values of CFU-GM, BFU-E, and CD34+ cells per milliliter remained above defined threshold levels longer with higher doses of SCF. The higher doses of SCF offer a greater window of opportunity in which to perform the apheresis to achieve high yields. CONCLUSION SCF (15 or 20 microg/kg) in combination with filgrastim following chemotherapy is an effective way of increasing progenitor cell yields compared with filgrastim alone following chemotherapy.



Sign in / Sign up

Export Citation Format

Share Document