Local bond strength prediction of deformed reinforcing bars in concrete considering heterogeneity at interface regions

2021 ◽  
pp. 1-20
Author(s):  
Shutong Yang ◽  
Miao Yu ◽  
Kun Dong ◽  
Yushan Yang

An analytical model is proposed to predict local bond strength (τf) by incorporating heterogeneity at interface regions for deformed reinforcing bars centrally anchored in concrete. The rib width on the bar surface is introduced as an interfacial characteristic parameter G in the proposed model; this accounts for the heterogeneity. Both τf and the local interfacial fracture energy (GIIf) of each specimen were found to be linked to G and can be determined analytically from the maximum pull-out loads (Fmax) from tests. It was found that the predicted τf was larger than the maximum average bond stress (τavg-max); the discrepancy between the two values reduced with an increase in L/G. Moreover, with an increase in L/G, the predicted τf showed a certain decrease, with the reduction decreasing with stronger interfacial homogeneity. The predicted GIIf was found to be significantly increased because of the weaker boundary effect. The validity of the proposed model was verified using comparisons of predicted Fmax (using the determined values of τf and GIIf) and the experimental Fmax, with the only failure mode being bar pull-out. Moreover, the model can be applied to steel or fibre-reinforced polymer bars and the concrete refers to all types of cementitious materials.

2005 ◽  
Vol 32 (3) ◽  
pp. 553-560 ◽  
Author(s):  
M Reza Esfahani ◽  
M Reza Kianoush ◽  
M Lachemi

This paper presents the results of an experimental study on bond strength of reinforcing bars made of glass fibre reinforced polymers (GFRP) embedded in normal and self-consolidating concrete. The study included pull-out tests of 36 GFRP reinforcing bars embedded in concrete specimens. Different parameters such as type of concrete, bar location, and cover thickness were considered as variables in different specimens. The results showed that the type of bond failure was by splitting of concrete for all specimens. The bond strength of bottom GFRP reinforcing bars was almost the same for both normal concrete and self-consolidating concrete. For the top bars, however, the bond strength of self-consolidating concrete was less than that of normal concrete.Key words: bond strength, glass FRP, reinforcing bars, top-bar effect, self-consolidating concrete.


2011 ◽  
Vol 94-96 ◽  
pp. 543-546
Author(s):  
Ning Zhang ◽  
Ai Zhong Lu ◽  
Yun Qian Xu ◽  
Pan Cui

Direct pull-out tests were performed to evaluate the bond performance of glass fiber-reinforced polymer (GFRP) reinforcing bars in cement mortar. Specimens with different bar diameters and different grouted lengths (i.e., 5d, 10d and 15d, d is the diameter of bars) are prepared for the pull-out tests. For comparison, specimens with plain aluminium alloy bars (AAB) were tested as well. The result shows that the average bond stress between plain aluminium alloy bars and cement is much smaller than that between the deformed GFRP bars and cement; thin GFRP bars tended to have larger average bond stress; the shorter the grouted length, the smaller the maximum average bond stress. Only part of grouted length undertakes the bond stress and the length depends on the shear modulus of GFRP and the surrounding material.


2021 ◽  
Author(s):  
Aamer Abbas ◽  
◽  
Yaqoob Yaqoob ◽  
Ola Hussein ◽  
Ibrahim Al-Ani ◽  
...  

This study presents experimentally the bond behavior of light-weight concrete specimens with grouted reinforcing bars in comparison with conventional concrete specimens. A total of (9) pull-out specimens were studied; (3) specimens of conventional concrete, (3) specimens of light-weight concrete, and other (3) specimens of grouted light-weight concrete. Two variables are adopted in this investigation: specimen width and type of concrete (conventional concrete, light-weight concrete and grouted light-weight concrete). The study contains a discussion of the general behavior of the specimens in addition to the study of the ultimate bond capacity, maximum bond stresses and the relationship between the stress and the slip for different pull-out specimens. Results show that bond strength is highest for the largest specimen size (bond strength of grouted light-weight concrete specimen with specimen width 400 mm is higher than that of the specimen with (200 mm) width by about (13.13%)). Also, bond strength is highest for the grouted light-weight concrete specimen (bond strength of grouted light-weight concrete specimen is higher than conventional concrete specimen by (11.11%)).


2018 ◽  
Vol 159 ◽  
pp. 01017 ◽  
Author(s):  
Nuroji ◽  
Daniel Herdian Primadyas ◽  
Ilham Nurhuda ◽  
Muslikh

This paper describes the research on bond behavior of plain reinforcing bars in geopolymer and normal concrete. The geopolymer concrete in this research was made of class F fly ash taken from Tanjung Jati Electric Steam Power Plant (PLTU) with Sodium Hydroxide (NaOH) and Sodium Silicate (Na2SiO3) as alkaline activator, added in the mixture. The effect of bar size was studied by varying the bar diameter in range 10 mm to 19 mm. Each bar was casted in the center of concrete blocks made of geopolymer as well as normal concrete. Pull-out tests were carried out to the specimens that have reached 28 days of age. The test results show that the bond behavior of geopolymer concrete differs substantially from normal concrete, where geopolymer concrete has a higher bond strength when compared to normal concrete with identical concrete strengths.


2021 ◽  
Vol 11 (19) ◽  
pp. 8874
Author(s):  
Amadou Sakhir Syll ◽  
Hiroki Shimokobe ◽  
Toshiyuki Kanakubo

The corrosion of rebars in reinforced concrete structures cracks the concrete, which leads to the degradation of the bond strength between the rebar and concrete. Since bond deterioration can menace structural safety, bond strength evaluation is essential for proper maintenance. In this study, the authors investigated bond strength degradation by conducting pull-out tests on concrete specimens, with induced crack width and stirrups ratio being the principal parameters. An expansion agent-filled pipe (EAFP) simulates cracks due to the volumetric expansion of the corroded rebar. One advantage of this method is that it allows one to focus on the single effect of an induced crack. The pull-out tests on 36 specimens show that stirrups’ confinement significantly influences the bond degradation due to induced cracks. The authors proposed an empirical model for the degradation of bond strength, considering the impact of induced crack width. The result shows that the induced crack by EAFP can quantify the exclusive consequence of corrosion on bonds. Furthermore, the coefficient of variation is 12% for specimens without stirrup from Law et al. For specimen without and with stirrup from Lin et al., the coefficients of variation are 14% and 17%. The proposed model can predict the corroded specimen from the literature with reasonable accuracy.


This paper presents an experimental study on the bond behaviour of sand-coated basalt fibre reinforced polymer (BFRP) bars and conventional steel bars of 10mm- diameter. The bond strength of these bars were determined according to ASTM D7913/D7913M-14 standards. The pullout specimens consisted of BFRP bars embedded in concrete cubes (200mm on each side) with the compressive strength of 40MPa were constructed. The pullout test results contain the bond failure mode, the average bond strength , the slip at the free and loaded end, and the bond stress-slip relationship curves.The test results showed that the bond strength of sand-coated BFRP bars was about 70% that of the steel bars.


2010 ◽  
Vol 69 ◽  
pp. 143-151 ◽  
Author(s):  
Prabir Sarker

Geopolymer is an inorganic alumino-silicate product that shows good bonding properties. Geopolymer binders are used together with aggregates to produce geopolymer concrete which is an ideal building material for infrastructures. A by-product material such as fly ash is mixed together with an alkali to produce geopolymer. Current research on geopolymer concrete has shown potential of the material for construction of reinforced concrete structures. Structural performance of reinforced concrete depends on the bond between concrete and the reinforcing steel. Design provisions of reinforced concrete as a composite material are based on the bond strength between concrete and steel. Since geopolymer binder is chemically different from Ordinary Portland Cement (OPC) binder, it is necessary to understand the bond strength between geopolymer concrete and steel reinforcement for its application to reinforced concrete structures. Pull out test is commonly used to evaluate the bond strength between concrete and reinforcing steel. This paper describes the results of the pull out tests carried out to investigate the bond strength between fly ash based geopolymer concrete and steel reinforcing bars. Beam end specimens in accordance with the ASTM Standard A944 were used for the tests. In the experimental program, 24 geopolymer concrete and 24 OPC concrete specimens were tested for pull out. The concrete compressive strength varied from 25 to 55 MPa. The other test parameters were concrete cover and bar diameter. The reinforcing steel was 500 MPa steel deformed bars of 20 mm and 24 mm diameter. The concrete cover to bar diameter ratio varied from 1.71 to 3.62. It was found from the test results that the failure occurred by splitting of concrete in the region bonded with the steel bar, in both geopolymer and OPC concrete specimens. Comparison of the test results shows that geopolymer concrete has higher bond strength than OPC concrete. This suggests that the existing design equations for bond strength of OPC concrete with steel reinforcing bars can be conservatively used for calculation of bond strength of geopolymer concrete.


2008 ◽  
Vol 11 (5) ◽  
pp. 537-547 ◽  
Author(s):  
Mark Nelson ◽  
Yu Ching Lai ◽  
Amir Fam

A moment connection of concrete-filled fibre reinforced polymer (FRP) tubes (CFFTs) to concrete footing is explored. The CFFTs are directly embedded into the footings to develop their full moment capacity, in lieu of using mechanical connections, dowel reinforcing bars, or posttensioning methods. CFFT specimens of 219 mm diameter (D) were embedded into footings, at various depths, ranging from 0.3D to 1.5D. The CFFT cantilevered specimens were then laterally loaded to failure. The objective was to establish the critical embedment length, which was found to be 0.73D. Shorter embedment lengths resulted in a bond failure associated with excessive slip, where the full flexural strength of CFFTs was not reached. Specimens with the critical or longer embedment lengths have achieved flexural tension failure of the CFFT, just outside the footing. Ancillary push-through tests were also carried out using CFFT stubs embedded into concrete footings, throughout the full thickness of the footing, and tested under concentric compression loads. The objective was to establish the bond strength between the GFRP tube and concrete footing, which was found to be 0.75 MPa. The bond strength and critical embedment length will vary from case to case. As such, the parameters affecting their values have been identified.


2002 ◽  
Vol 29 (2) ◽  
pp. 338-343 ◽  
Author(s):  
Brahim Benmokrane ◽  
Burong Zhang ◽  
Kader Laoubi ◽  
Brahim Tighiouart ◽  
Isabelle Lord

This paper presents laboratory test results on the mechanical properties and bond strength of new generation of carbon fibre reinforced polymer (CFRP) reinforcing bars used as nonprestressed reinforcement for concrete structures. Two types of CFRP reinforcing bars, namely, 9-mm-diameter CFRP ribbed bars and 9.5-mm-diameter CFRP sand-coated bars, were investigated. Tensile tests and pullout bond tests were conducted to evaluate the tensile properties and bond strength of the CFRP bars in comparison with that of the steel bar. Experimental results showed that the tensile stress-strain curves of the CFRP bars were linear up to failure. The ultimate tensile strength of the two types of CFRP bars was at least 1500 MPa, three times that of steel bars. The modulus of elasticity of two types of the CFRP bars was 128–145 GPa, about 65–75% that of steel. Furthermore, both types of the CFRP bars exhibited almost the same bond strength to concrete similar to steel bars. The minimum bond development length for the two types of CFRP bars seemed to be equal to about 20db for the sand-coated bars and 30db for the ribbed bars.Key words: fibre reinforced polymer (FRP), carbon FRP (CFRP), bar, mechanical properties, tensile strength, embedded length, pullout, bond strength, concrete structures.


Sign in / Sign up

Export Citation Format

Share Document