Regenerative and Proinflammatory Effects of Thrombin on Human Proximal Tubular Cells

2000 ◽  
Vol 11 (6) ◽  
pp. 1016-1025 ◽  
Author(s):  
GIUSEPPE GRANDALIANO ◽  
RAFFAELLA MONNO ◽  
ELENA RANIERI ◽  
LORETO GESUALDO ◽  
FRANCESCO P. SCHENA ◽  
...  

Abstract. Interstitial fibrin deposition is a common histologic feature of tubulointerstitial diseases, which suggests that the coagulation system is activated. Thrombin, generated during the activation of the coagulation cascade, is a powerful activating factor for different cell types. Although proximal tubular cells are potential targets for this coagulation factor, no information is available on the effect of thrombin on these cells. Thus, the expression of protease-activated receptor-1 (PAR-1), the main thrombin receptor, was investigated in human proximal tubular cells (hPTC)in vivoandin vitro. A diffuse expression of PAR-1 was observed by immunohistochemistry along the basolateral membrane of PTC in normal human kidney. This observation was confirmedin vitroin cultured hPTC. Because tubular damage and monocyte infiltration are two hallmarks of tubulointerstitial injury, the effect of thrombin on DNA synthesis and monocyte chemotactic peptide-1 (MCP-1) gene and protein expression was evaluated in cultured hPTC. Thrombin induced a significant and dose-dependent increase in thymidine uptake and a striking upregulation of MCP-1 mRNA expression and protein release into the supernatant. Although PAR-1 is a G protein-coupled receptor, its activation in hPTC, as in other cell systems, resulted in a transient increase in cellular levels of tyrosine-phosphorylated proteins. An increased level of tyrosine-phosphorylated c-src suggested the activation of this cytoplasmic tyrosine kinase in response to thrombin and its potential role in thrombin-induced protein-tyrosine phosphorylation. Interestingly, thrombin-induced DNA synthesis and MCP-1 gene expression were completely blocked by genistein, a specific tyrosine kinase inhibitor, but not by its inactive analogue daidzein, demonstrating a central role for tyrosine kinase activation in the thrombin effects on hPTC. Moreover, the specific src inhibitor PP1 abolished the thrombin effect on DNA synthesis. In conclusion, thrombin might represent a powerful regenerative and proinflammatory stimulus for hPTC in acute and chronic tubulointerstitial diseases.

2020 ◽  
Vol 21 (11) ◽  
pp. 4054
Author(s):  
Kazuhiko Fukushima ◽  
Shinji Kitamura ◽  
Kenji Tsuji ◽  
Yizhen Sang ◽  
Jun Wada

Obesity is supposed to cause renal injury via autophagy deficiency. Recently, sodium glucose co-transporter 2 inhibitors (SGLT2i) were reported to protect renal injury. However, the mechanisms of SGLT2i for renal protection are unclear. Here, we investigated the effect of SGLT2i for autophagy in renal proximal tubular cells (PTCs) on obesity mice. We fed C57BL/6J mice with a normal diet (ND) or high-fat and -sugar diet (HFSD) for nine weeks, then administered SGLT2i, empagliflozin, or control compound for one week. Each group contained N = 5. The urinary N-acetyl-beta-d-glucosaminidase level in the HFSD group significantly increased compared to ND group. The tubular damage was suppressed in the SGLT2i–HFSD group. In electron microscopic analysis, multi lamellar bodies that increased in autophagy deficiency were increased in PTCs in the HFSD group but significantly suppressed in the SGLT2i group. The autophagosomes of damaged mitochondria in PTCs in the HFSD group frequently appeared in the SGLT2i group. p62 accumulations in PTCs were significantly increased in HFSD group but significantly suppressed by SGLT2i. In addition, the mammalian target of rapamycin was activated in the HFSD group but significantly suppressed in SGLT2i group. These data suggest that SGLT2i has renal protective effects against obesity via improving autophagy flux impairment in PTCs on a HFSD.


2018 ◽  
Vol 315 (6) ◽  
pp. F1720-F1731 ◽  
Author(s):  
Lung-Chih Li ◽  
Jenq-Lin Yang ◽  
Wen-Chin Lee ◽  
Jin-Bor Chen ◽  
Chien-Te Lee ◽  
...  

High levels of serum free fatty acids (FFAs) and proteinuria have been implicated in the pathogenesis of obesity-related nephropathy. CD36, a class B scavenger receptor, is highly expressed in the renal proximal tubules and mediates FFA uptake. It is not clear whether FFA- and proteinuria-mediated CD36 activation coordinates NLRP3 inflammasomes to induce renal tubular injury and inflammation. In this study, we investigated the roles of CD36 and NLRP3 inflammasomes in FFA-induced renal injury in high-fat diet (HFD)-induced obesity. HFD-fed C57BL/6 mice and palmitate-treated HK2 renal tubular cells were used as in vivo and in vitro models. Immunohistochemical staining showed that CD36, IL-1β, and IL-18 levels increased progressively in the kidneys of HFD-fed mice. Sulfo- N-succinimidyl oleate (SSO), a CD36 inhibitor, attenuated the HFD-induced upregulation of NLRP3, IL-1β, and IL-18 and suppressed the colocalization of NLRP3 and ASC in renal tubular cells. In vitro, SSO abolished the palmitate-induced activation of IL-1β, IL-18, and caspase-1 in HK2 proximal tubular cells. Furthermore, treatment with SSO and the knockdown of caspase-1 expression by siRNA both inhibited palmitate-induced cell death and apoptosis in HK2 cells. Collectively, palmitate causes renal tubular inflammation, cell death, and apoptosis via the CD36/NLRP3/caspase-1 axis, which may explain, at least in part, the mechanism underlying FFA-related renal tubular injury. The blockade of CD36-induced cellular processes is therefore a promising strategy for treating obesity-related nephropathy.


1995 ◽  
Vol 98 (2) ◽  
pp. 97-112 ◽  
Author(s):  
H.E.M.G. Haenen ◽  
I.M.C.M. Rietjens ◽  
J. Vervoort ◽  
J.H.M. Temmink ◽  
P.J. van Bladeren

2021 ◽  
Author(s):  
Mingming Ma ◽  
Qiao Luo ◽  
Lijing Fan ◽  
Weilong Li ◽  
Qiang Li ◽  
...  

Aim: Acute kidney injury (AKI), a global public health issue, not only causes millions of deaths every year, but is also a susceptible factor for chronic kidney disease (CKD). Nephrotoxic drugs are an important cause of AKI. There is still a lack of effective and satisfactory prevention method in clinical practice. This study investigated the protective effect of the exosomes derived from urine of premature infants on cisplatin-induced acute kidney injury. Methods: Isolation of exosomes from fresh urine of premature infants: The characteristics of exosomes were determined by flow cytometry, transmission electron microscopy and Western blotting. A C57BL/6 mice model of cisplatin-induced acute kidney injury was established. The mice in the experimental group were given 100ug exosomes dissolved in 200ul solution. The mice in the control group were given normal saline (200ul). These treatments were performed 24 hours after AKI was induced by intraperitoneal injection of cisplatin. To evaluate renal function, blood was drawn 24 hours after AKI model was established and serum creatinine (sCr) was measured. The mice were euthanized 72 hours after exosome treatment. The kidneys were collected for pathological examination, RNA and protein extraction, and the evaluation of renal tubular damage and apoptosis. In the in-vitro experiment, human renal cortex/proximal tubular cells (HK2) was induced by cisplatin to assess the protective ability of the exosomes derived from urine of premature infants. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western Blotting were used to evaluate the effect of exosomes treatment on the apoptosis of HK2 cells induced by cisplatin. Exosome microRNA sequencing technology and bioinformatics analysis method were applied to investigate the miRNAs enriched in exosomes and their target genes. The dual luciferase gene reporter system was used to detect the interaction of target genes. Results: Treatment of exosomes derived from urine of premature infants could decrease the level of serum creatinine and the apoptosis of renal tubular cell, inhibit the infiltration of inflammatory cell, protect mice from acute kidney injury induced by cisplatin and reduce mortality. In addition, miR-30a-5p was the most abundant miRNA in the exosomes derived from urine of premature infants. It protected HK2 cells from cisplatin-induced apoptosis by targeting and down-regulating the 3'UTR of mitogen-activated protein kinases (MAPK8) mRNA. Conclusions: According to our results, the exosomes derived from urine of premature infants alleviated cisplatin-induced acute kidney injury in mice and inhibited the apoptosis of human proximal tubular cells (HK2) induced by cisplatin in vitro. MiR-30a-5p in exosomes inhibited cisplatin-induced MAPK activation, ameliorated apoptosis, and protected renal function. The exosomes derived from urine of premature infants provided a promising acellular therapy for AKI.


Sign in / Sign up

Export Citation Format

Share Document