scholarly journals Optimización de los hiperparámetros de una máquina de regresión de soporte vectorial utilizando enjambre de partículas para el pronóstico de casos de COVID-19 en Bogotá

2021 ◽  
Vol 9 (2) ◽  
pp. 91-111
Author(s):  
Norbey Danilo Muñoz Cañón ◽  
Jairo Andrés Romero Triana

Objetivo: optimizar los hiperparámetros de una máquina de regresión de soporte vectorial mediante la adaptación de la metaheurística de enjambre de partículas para pronosticar la serie de tiempo del total de casos positivos acumulados de la reciente enfermedad COVID-19 en la ciudad de Bogotá, Colombia. Metodología: se plantea un algoritmo híbrido de regresión de soporte vectorial y optimización por enjambre de partículas para encontrar el valor óptimo de los hiperparámetros de una máquina de regresión de soporte vectorial que mejor rendimiento muestre en el pronóstico de la serie de tiempo. Se valida a través de una comparación de los valores reales con los predichos obtenidos por una máquina de regresión sin hiperparámetros optimizados, en términos de métricas de desempeño como el error cuadrático medio, error absoluto medio y coeficiente de determinación. Resultados: cualitativamente se verifica el rendimiento mediante los pronósticos obtenidos en la serie de tiempo; cuantitativamente, con un valor en el error cuadrático medio de 0,000045 y un coeficiente de determinación de 0,998884, el método propuesto presenta un mayor desempeño. Conclusiones: el algoritmo presentado y aplicado es útil para el pronóstico de series de tiempo; con este algoritmo se aporta al campo de investigación; finalmente se discute sobre la implementación de este método en el contexto epidemiológico.

Sign in / Sign up

Export Citation Format

Share Document