scholarly journals Studi Karakteristik Air-Tanah di Kawasan Nuklir Pasar Jumat (KNPJ) dengan Metode Hidrokimia dan Isotop Alam

EKSPLORIUM ◽  
2018 ◽  
Vol 39 (1) ◽  
pp. 51
Author(s):  
Neneng Laksminingpuri Sanusi ◽  
Nurfadhlini Nurfadhlini ◽  
Satrio Satrio

Telah dilakukan penelitian air-tanah di Kawasan Nuklir Pasar Jumat (KNPJ) menggunakan metode hidrokimia dan isotop alam. Penelitian dilakukan dengan mengambil sejumlah sampel air di beberapa kawasan KNPJ dan sekitarnya. Sampel air tersebut kemudian dianalisis konsentrasi kimia airnya (anion-kation) dan konsentrasi isotop alam d2H dan d18O menggunakan alat lasser counter. Analisis kimia air dilakukan menggunakan metode ion kromatografi dan titrasi. Tujuan penelitian ini, yaitu untuk mengetahui karakteristik air-tanah terhadap kemungkinan interaksi dengan air permukaan sekitarnya. Berdasarkan hasil analisis hidrokimia (anion-kation) dan isotop alam (d2H, d18O) menunjukkan bahwa air-tanah dalam masih mencerminkan karakter sebagai air-tanah segar atau freshwater. Air-tanah akuifer dalam juga terindikasi tidak berhubungan dengan air-tanah akuifer dangkal yang berada di atasnya. Air-tanah dangkal, sebagian besar masih menunjukkan karakter air-tanah segar dan sebagian lainnya, yaitu SB-8, SB-9, dan SB-10, air-tanahnya mengalami pertukaran ion dan interaksi dengan air permukaan. Air permukaan untuk SB-8 diperkirakan berasal dari rembesan larutan pupuk tanaman sedangkan untuk SB-9 dan SB-10 air permukaan diperkirakan berasal dari rembesan tanki kotoran (septic tank). Groundwater research has been conducted in Nuclear Area of Pasar Jumat (KNPJ) using hydrochemical data and natural isotopes methods. The research was conducted by taking a number of water samples in some areas of KNPJ and also its surrounding areas. The water samples were then analyzed its hydrochemical concentration (anion-cation) and natural isotope concentration d2H and d18O using lasser counter device. Water chemical analysis was conducted by using ion chromatography and titration methods. The purpose of this research is to know the characteristics of groundwater to the possibility of its interaction with the surrounding surface water. Based on the results of hydrochemical analysis (anion-cation) and natural isotopes (d2H, d18O) indicates that groundwater still reflects the character as fresh groundwater or freshwater. The deep aquifer groundwater is also indicated to be unrelated to groundwater of shallow aquifers located above it. While most shallow groundwater still show the character of fresh groundwater, and some others namely SB-8, SB-9, and SB-10, the groundwater undergo ion exchanges and interact with surface water. Surface water for SB-8 is estimated come from the seepage of the liquid plant fertilizer, whereas for SB-9 and SB-10 surface water is estimated come from septic tank seepage.

Author(s):  
Jiying Xu ◽  
Herong Gui ◽  
Yuting Xia ◽  
Honghai Zhao ◽  
Chen Li ◽  
...  

Abstract The surface water from subsidence lake and shallow groundwater play an important role for agriculture, industry and local communities in coal mining areas. The connection between two type water and quality, however, remains unclear. In this study, 37 samples were collected from subsidence lake and shallow groundwater around Luling coal mine. The hydrogeochemisty data and formation mechanisms were analyzed to reveal the connection proof. Compared with shallow groundwater, the surface water from subsidence lake have a higher content of Na+ and HCO3−. For two type water samples, Na+ and Mg2+ are two most abundant cations, followed by Ca2+. The contents of anions followed the same order: HCO3− > SO42− > Cl−. The water samples were controlled by NaHCO3 (99.3%) type. The chemical composition of two type water were similar, which are all mainly influenced by silicate minerals weathering and ion-exchange interactions, among which ion-exchange interactions was more intense than in shallow groundwater. The recharging source of two type water mainly came from atmospheric precipitation. The two water in the study area, in general, showed the risk of high salt and low-moderate alkali damage. The outcomes provide a better understanding of subsidence lake and groundwater and it will help for utilization of water resources.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
G. K. Bakyayita ◽  
A. C. Norrström ◽  
R. N. Kulabako

The levels, speciation of elements, and toxicity of selected trace metals as well as other parameters in selected surface water, shallow groundwater sources, landfill leachate, and associated surface runoff in the Lake Victoria basin, Uganda, were studied. The WHO guidelines, Ugandan standards, Canadian guidelines and Swedish EPA were used for assessment. The shallow groundwater was acidic with pH values below 6.5. The pH, dissolved organic carbon, flouride, and sulphate levels for all springs were below the guideline values although 52.8% was contaminated with nitrates while 39% was contaminated with chloride ions. Some surface water samples had levels of major elements, such as iron, chromium, aluminium, and manganese, above the guideline values. Speciation studies showed that 74% of the metal ions was bound to dissolved organic matter in surface water, whereas in landfill leachates, the dominant ionic species was metal hydroxides or fulvic acid bound. Risk analysis based on the Swedish EPA showed varied risks of negative effects in 30%–76% of the sample sites ranging from high to increased risk in surface water, whereas the results from modelling sorption data using the Bio-met tool showed potential risk to toxicity effects of Cu2+, Ni2+, Zn2+, and Pb2+ in 15.3%–30.8% surface water samples and 8.3%–62.5% groundwater samples.


2017 ◽  
Vol 64 (4) ◽  
pp. 221-226
Author(s):  
Muzafarov Amrillo Mustafaevich ◽  
Sattarov Gayvillo Sattorovich

AbstractThis article presents the results of a preliminary assessment of the radioactivity of natural waters and the isotope analysis of drinking water. It describes the methods for the radiochemical preparation of water samples, which include concentration of uranium isotopes from water samples, extraction from impeding radionuclides and preparation of electrically countable samples. The results of violation of radioactive equilibrium between the isotopes 234U/238U and the several factors affecting this process in water samples have been obtained. It is clear from the obtained result that 234U isotope concentration in groundwater is higher than that in surface water.


2006 ◽  
Vol 6 (2) ◽  
pp. 47-53 ◽  
Author(s):  
D. Simazaki ◽  
M. Asami ◽  
T. Nishimura ◽  
S. Kunikane ◽  
T. Aizawa ◽  
...  

Nationwide surveys of 1,4-dioxane and methyl-t-butyl ether (MTBE) levels in raw water used for the drinking water supply were conducted at 91 water treatment plants in Japan in 2001 and 2002, prior to the revision of the drinking water quality standards. 1,4-dioxane was widely and continuously detected in raw water samples and its occurrence was more frequent and its concentrations higher in groundwater than in surface water. However, its maximum concentration in raw water was much lower than its new standard value (50 μg/L), which was determined as a level of 10−5 excessive cancer risk to humans. Trace levels of MTBE were also detected in several surface water samples.


2000 ◽  
Vol 41 (7) ◽  
pp. 197-202 ◽  
Author(s):  
F. Zanelli ◽  
B. Compagnon ◽  
J. C. Joret ◽  
M. R. de Roubin

The utilization of the ChemScan® RDI was tested for different types of water concentrates. Concentrates were prepared by cartridge filtration or flocculation, and analysed either without purification, or after Immunomagnetic separation (IMS) or flotation on percoll-sucrose gradients. Theenumeration of the oocysts was subsequently performed using the ChemScan® RDI Cryptosporidium application. Enumeration by direct microscopic observation of the entire surface of the membrane was carried out as a control, and recoveries were calculated as a ratio between the ChemScan® RDI result and the result obtained with direct microscopic enumeration. The Chemscan enumeration technique proved reliable, with recoveries yielding close to 100% in most cases (average 125%, range from 86 to 467%) for all the concentration/purification techniques tested. The quality of the antibodies was shown to be critical, with antibodies from some suppliers yielding recoveries a low as 10% in some cases. This difficulty could, however, be overcome by the utilization of the antibody provided by Chemunex. These data conclusively prove that laser scanning cytometry, which greatly facilitates the microscopic enumeration of Cryptosporidium oocysts from water samples and decreases the time of observation by four to six times, can be successfully applied to water concentrates prepared from a variety of concentration/purification techniques.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ananda Tiwari ◽  
Anna-Maria Hokajärvi ◽  
Jorge Santo Domingo ◽  
Michael Elk ◽  
Balamuralikrishna Jayaprakash ◽  
...  

Abstract Background Rivers and lakes are used for multiple purposes such as for drinking water (DW) production, recreation, and as recipients of wastewater from various sources. The deterioration of surface water quality with wastewater is well-known, but less is known about the bacterial community dynamics in the affected surface waters. Understanding the bacterial community characteristics —from the source of contamination, through the watershed to the DW production process—may help safeguard human health and the environment. Results The spatial and seasonal dynamics of bacterial communities, their predicted functions, and potential health-related bacterial (PHRB) reads within the Kokemäenjoki River watershed in southwest Finland were analyzed with the 16S rRNA-gene amplicon sequencing method. Water samples were collected from various sampling points of the watershed, from its major pollution sources (sewage influent and effluent, industrial effluent, mine runoff) and different stages of the DW treatment process (pre-treatment, groundwater observation well, DW production well) by using the river water as raw water with an artificial groundwater recharge (AGR). The beta-diversity analysis revealed that bacterial communities were highly varied among sample groups (R = 0.92, p <  0.001, ANOSIM). The species richness and evenness indices were highest in surface water (Chao1; 920 ± 10) among sample groups and gradually decreased during the DW treatment process (DW production well; Chao1: 320 ± 20). Although the phylum Proteobacteria was omnipresent, its relative abundance was higher in sewage and industrial effluents (66–80%) than in surface water (55%). Phyla Firmicutes and Fusobacteria were only detected in sewage samples. Actinobacteria was more abundant in the surface water (≥13%) than in other groups (≤3%). Acidobacteria was more abundant in the DW treatment process (≥13%) than in others (≤2%). In total, the share of PHRB reads was higher in sewage and surface water than in the DW treatment samples. The seasonal effect in bacterial communities was observed only on surface water samples, with the lowest diversity during summer. Conclusions The low bacterial diversity and absence of PHRB read in the DW samples indicate AGR can produce biologically stable and microbiologically safe drinking water. Furthermore, the significantly different bacterial communities at the pollution sources compared to surface water and DW samples highlight the importance of effective wastewater treatment for protecting the environment and human health.


2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Saheed Adekunle Ganiyu ◽  
Abimbola Temitope Oyadeyi ◽  
Azeem Adedeji Adeyemi

AbstractThis study has been conducted to appraise the concentrations of selected heavy metals and total dissolved solids (TDSs) in the drinking water from shallow wells in parts of Ibadan metropolis, southwest Nigeria. Fifteen (15) water samples were collected from three representative residential locations [traditional core area (TCA), peri-urban area (PUA), and urban area (UA)] for geochemical analysis. Heavy metals and TDS were analyzed with the aid of atomic absorption spectrophotometer and calibrated meter, respectively. The mean concentration (mg/L) of Zn, Pb Mn, Fe, and Cd has been 3.930, 0.658, 0.0304, 1.698, and 0.501, respectively, and as a consequence, the order of abundance of studied metals was Zn > Fe > Pb > Cd > Mn. Concentrations of Zn, Fe, Pb, and Cd were higher than recommended standards in 60%, 86.7%, 100%, and 100% of groundwater samples, respectively. However, at all points tested, the mean concentrations of Mn and TDS in water samples lie within the safe limits set by World Health Organization. The evaluation of geoaccumulation index (Igeo), enrichment factor (EF), and contamination factor suggests that representative water samples were low-to-moderate contamination. The potential ecological risk index advocates low-to-moderate ecological risk in TCA and PUA, while it demonstrated exclusive “moderate” risk in UA. Further, the range of pollution load index (PLI) (0.55–1.32) in both TCA and PUA shows nil-to-moderate pollution status, while PLI values > 1 in UA indicate moderate contaminated state. The degree of contamination in groundwater showed the following trends: UA > TCA > PUA in the study area. Moreover, the results of EF and quantification of contamination of analyzed metals in water samples indicate geogenic and anthropogenic inputs. The contribution of studied metals to the incidence of non-cancer risk via oral intake within the residential sites follows the order: cadmium > lead > zinc > iron > manganese. The hazard index as a result of ingested heavy metals for the three population classes surpasses the acceptable range in the order of infant < child < adult. Cadmium and lead made considerable impact to the estimation of cancer risk in the study area for the three human population categories. Factor analysis extracted only one component that explained 94.64% of the entire variance, while cluster analysis identified three distinct groups based on similar water quality characteristics. Based on the findings of the study, awareness programs toward protecting the shallow groundwater sources should be launched, encouraged, and sustained. Moreover, the study suggests better hygienic practices and pre-treatment of contaminated water before consumption.


2021 ◽  
Vol 11 (9) ◽  
Author(s):  
Bishnu Prasad Sahoo ◽  
Himanshu Bhushan Sahu ◽  
Dhruti Sundar Pradhan

AbstractCoal mining and ancillary activities have the potential to cause water pollution characterized by acid mine drainage, acid mine leachates, extreme pH conditions and heavy metal contaminations. In the present work, 33 water samples in premonsoon and 34 water samples in monsoon were collected from the surface water bodies of Ib Valley coalfield, India for hydrogeochemical analysis. In premonsoon, pH, TSS, Turbidity, DO, BOD, COD, Magnesium, Cadmium, Selenium, Nickel, Aluminum and in monsoon, pH, TSS, Turbidity, DO, BOD, COD, Iron, Cadmium, Selenium, Nickel and Aluminum were nonconforming to the permissible limit set by the Bureau of Indian Standards, World Health Organisation and Ministry of Environment, Forest and Climate Change, Government of India. The average BOD/COD ratio of less than 0.6 in both seasons indicated Ib valley coalfield water was not fairly biodegradable. The analysis of variance (ANOVA) revealed that significant seasonal variation (p < 0.05) was observed in the hydro-chemical parameters viz. TSS, turbidity, redox potential, acidity, total hardness, bicarbonate alkalinity, chloride, sulfate, nitrate, sodium, calcium, magnesium, iron, cadmium, chromium and magnesium during the entire sampling period. Whereas, no significant seasonal variation (p > 0.05) was observed in pH, EC, TDS, DO, BOD, residual chlorine, COD, oil and grease, fluoride, potassium, zinc, copper, selenium, nickel, aluminum, boron, silica, temperature, salinity, cyanide and phenol. Water Quality Index revealed that 39.39% and 35.29% samples belong to poor water quality category in premonsoon and monsoon, respectively. As per Heavy Metal Pollution Index, Degree of Contamination (Cd) and Heavy metal evaluation index, medium degree of pollution were exhibited by 51.52%, 30.30% and 45.45% samples in premonsoon and 20.59%, 35.29% and 26.47% samples in monsoon. Whereas, 5.88%, 2.94% and 5.88% samples were having high degree of pollution in monsoon and 15.15% samples caused high degree of pollution with respect to Cd in premonsoon. However, EC, Na%, PI, SAR and RSC values suggested that the water can be used for irrigation. Water type of the region had been found to be Ca–Mg–Cl–SO4 by Piper diagram.


Author(s):  
Kamran Bashir ◽  
Zhimin Luo ◽  
Guoning Chen ◽  
Hua Shu ◽  
Xia Cui ◽  
...  

Griseofulvin (GSF) is clinically employed to treat fungal infections in humans and animals. GSF was detected in surface waters as a pharmaceutical pollutant. GSF detection as an anthropogenic pollutant is considered as a possible source of drug resistance and risk factor in ecosystem. To address this concern, a new extraction and enrichment method was developed. GSF-surface molecularly imprinted polymers (GSF-SMIPs) were prepared and applied as solid phase extraction (SPE) sorbent. A dispersive solid phase extraction (DSPE) method was designed and combined with HPLC for the analysis of GSF in surface water samples. The performance of GSF-SMIPs was assessed for its potential to remove GSF from water samples. The factors affecting the removal efficiency such as sample pH and ionic strength were investigated and optimized. The DSPE conditions such as the amount of GSF-SMIPs, the extraction time, the type and volume of desorption solvents were also optimized. The established method is linear over the range of 0.1–100 µg/mL. The limits of detection and quantification were 0.01 and 0.03 µg/mL respectively. Good recoveries (91.6–98.8%) were achieved after DSPE. The intra-day and inter-day relative standard deviations were 0.8 and 4.3% respectively. The SMIPs demonstrated good removal efficiency (91.6%) as compared to powder activated carbon (67.7%). Moreover, the SMIPs can be reused 10 times for water samples. This is an additional advantage over single-use activated carbon and other commercial sorbents. This study provides a specific and sensitive method for the selective extraction and detection of GSF in surface water samples.


Radiocarbon ◽  
1980 ◽  
Vol 22 (3) ◽  
pp. 684-692 ◽  
Author(s):  
Georgette Delibrias

14C measurements were carried out on sea water samples collected in 1973, in the Indian ocean. The results obtained for 9 vertical profiles between 27° S and 48°S are presented. In surface water, the bomb 14C content is maximum at middle latitudes. A time lag relative to the north hemisphere bomb 14C delivery is apparent. In the more southern latitudes, 14C content remains very low.


Sign in / Sign up

Export Citation Format

Share Document