scholarly journals CALCULATION OF RADIOACTIVE SOURCE TERM RELEASE FROM FLEXBLUE NPP

2021 ◽  
Vol 23 (2) ◽  
pp. 63
Author(s):  
Muhammad Budi Setiawan ◽  
Pande Made Udiyani

One of the National Research Programs (PRN) in the energy sector of the Indonesian Ministry of Research and Technology for the period of 2020-2024 is small modular reactor (SMR) nuclear power plant (NPP) assessment. The France’s Flexblue is a PWR-based SMR submerged reactor with a power of 160 MWe. The Flexblue reactor module was built on the ocean site and easily provided the supply of reactor modules, in accordance with the conditions of Indonesia as an archipelagic country. Therefore, it is necessary to know the release of fission products (source term), which is necessary for the study of the radiation safety of a nuclear reactor. This paper aims to examine the source term in normal operating conditions and abnormal normal operating conditions, as well as postulated accidents. Based on the Flexblue reactor core parameter data, the calculation of the reactor core inventory uses the ORIGEN2 software is previously evaluated. The source term calculation uses a mechanistic approach and a graded approach. The normal source term is calculated assuming the presence of impurities on the fuel plate, due to fabrication limitations. Meanwhile, the abnormal source term is postulated in the LOCA event. The core reactor inventory and source term is divided into 8 radionuclide groups which are Noble gasses group (Xe, Kr); Halogen (I); Akali Metal (Cs, Rb); Tellurium Group (Te, Sb, Sc); Barium-Strontium Group (Ba, Sr); Noble Metals (Ru, Rh, Pd, Mo, Tc, Co); Lanthanides group (La, Zr, Nd, Eu, Nb, Pm, Pr, Sm, Y, Cm, Am) and Cerium Group (Ce, Pu , Np).

Author(s):  
Robert A. Leishear

An explosion that burst a steel pipe like a paper fire cracker at the Hamaoka Nuclear Power Station, Unit-1 is investigated in this paper, which is one of a series of papers investigating fires and explosions in nuclear power plants. The accumulation of flammable hydrogen and oxygen due to radiolysis has long been recognized as a potential problem in nuclear reactors, where radiolysis is the process that decomposes water into hydrogen and oxygen by radiation exposure in the reactor core. Hydrogen ignition and explosion has long been considered the cause of this Hamaoka piping explosion, but the cause of ignition was considered to be a minor fluid transient, or water hammer, that ignited flammable gasses in the piping, which was made possible by the presence of catalytic noble metals inside the piping. The theory presented here is that a much larger pressure surge occurred due to water hammer during operations. In fact, calculations presented here serve as proof of principle that this explosion mechanism may be present in many operating nuclear power plants. Chubu Electric, the operator of the Hamaoka plant, took appropriate actions to prevent this type of explosion in their plants in the future. In fact, this accident indicates one potential preventive action from explosions for other operating plants. Ensure that a system high point is available, where mixed hydrogen and oxygen may be removed during routine operations and during off-normal accident conditions, such as nuclear reactor meltdowns and loss of coolant accidents.


2021 ◽  
Vol 30 (5) ◽  
pp. 66-75
Author(s):  
S. A. Titov ◽  
N. M. Barbin ◽  
A. M. Kobelev

Introduction. The article provides a system and statistical analysis of emergency situations associated with fires at nuclear power plants (NPPs) in various countries of the world for the period from 1955 to 2019. The countries, where fires occurred at nuclear power plants, were identified (the USA, Great Britain, Switzerland, the USSR, Germany, Spain, Japan, Russia, India and France). Facilities, exposed to fires, are identified; causes of fires are indicated. The types of reactors where accidents and incidents, accompanied by large fires, have been determined.The analysis of major emergency situations at nuclear power plants accompanied by large fires. During the period from 1955 to 2019, 27 large fires were registered at nuclear power plants in 10 countries. The largest number of major fires was registered in 1984 (three fires), all of them occurred in the USSR. Most frequently, emergency situations occurred at transformers and cable channels — 40 %, nuclear reactor core — 15 %, reactor turbine — 11 %, reactor vessel — 7 %, steam pipeline systems, cooling towers — 7 %. The main causes of fires were technical malfunctions — 33 %, fires caused by the personnel — 30 %, fires due to short circuits — 18 %, due to natural disasters (natural conditions) — 15 % and unknown reasons — 4 %. A greater number of fires were registered at RBMK — 6, VVER — 5, BWR — 3, and PWR — 3 reactors.Conclusions. Having analyzed accidents, involving large fires at nuclear power plants during the period from 1955 to 2019, we come to the conclusion that the largest number of large fires was registered in the USSR. Nonetheless, to ensure safety at all stages of the life cycle of a nuclear power plant, it is necessary to apply such measures that would prevent the occurrence of severe fires and ensure the protection of personnel and the general public from the effects of a radiation accident.


Author(s):  
Xiaomeng Dong ◽  
Zhijian Zhang ◽  
Zhaofei Tian ◽  
Lei Li ◽  
Guangliang Chen

Multi-physics coupling analysis is one of the most important fields among the analysis of nuclear power plant. The basis of multi-physics coupling is the coupling between neutronics and thermal-hydraulic because it plays a decisive role in the computation of reactor power, outlet temperature of the reactor core and pressure of vessel, which determines the economy and security of the nuclear power plant. This paper develops a coupling method which uses OPENFOAM and the REMARK code. OPENFOAM is a 3-dimension CFD open-source code for thermal-hydraulic, and the REMARK code (produced by GSE Systems) is a real-time simulation multi-group core model for neutronics while it solves diffusion equations. Additionally, a coupled computation using these two codes is new and has not been done. The method is tested and verified using data of the QINSHAN Phase II typical nuclear reactor which will have 16 × 121 elements. The coupled code has been modified to adapt unlimited CPUs after parallelization. With the further development and additional testing, this coupling method has the potential to extend to a more large-scale and accurate computation.


2019 ◽  
Vol 34 (3) ◽  
pp. 238-242
Author(s):  
Rex Abrefah ◽  
Prince Atsu ◽  
Robert Sogbadji

In pursuance of sufficient, stable and clean energy to solve the ever-looming power crisis in Ghana, the Nuclear Power Institute of the Ghana Atomic Energy Commission has on the agenda to advise the government on the nuclear power to include in the country's energy mix. After consideration of several proposed nuclear reactor technologies, the Nuclear Power Institute considered a high pressure reactor or vodo-vodyanoi energetichesky reactor as the nuclear power technologies for Ghana's first nuclear power plant. As part of technology assessments, neutronic safety parameters of both reactors are investigated. The MCNP neutronic code was employed as a computational tool to analyze the reactivity temperature coefficients, moderator void coefficient, criticality and neutron behavior at various operating conditions. The high pressure reactor which is still under construction and theoretical safety analysis, showed good inherent safety features which are comparable to the already existing European pressurized reactor technology.


2007 ◽  
Vol 22 (1) ◽  
pp. 18-33 ◽  
Author(s):  
Anis Bousbia-Salah

Complex phenomena, as water hammer transients, occurring in nuclear power plants are still not very well investigated by the current best estimate computational tools. Within this frame work, a rapid positive reactivity addition into the core generated by a water hammer transient is considered. The numerical simulation of such phenomena was carried out using the coupled RELAP5/PARCS code. An over all data comparison shows good agreement between the calculated and measured core pressure wave trends. However, the predicted power response during the excursion phase did not correctly match the experimental tendency. Because of this, sensitivity studies have been carried out in order to identify the most influential parameters that govern the dynamics of the power excursion. After investigating the pressure wave amplitude and the void feed back responses, it was found that the disagreement between the calculated and measured data occurs mainly due to the RELAP5 low void condensation rate which seems to be questionable during rapid transients. .


ROTASI ◽  
2013 ◽  
Vol 15 (4) ◽  
pp. 33
Author(s):  
Anwar Ilmar Ramadhan ◽  
Indra Setiawan ◽  
M. Ivan Satryo

Safety is an issue that is of considerable concern in the design, operation and development of a nuclear reactor. Therefore, the method of analysis used in all these activities should be thorough and reliable so as to predict a wide range of operating conditions of the reactor, both under normal operating conditions and in the event of an accident. Performance of heat transfer to the cooling of nuclear fuel, reactor safety is key. Poor heat removal performance would threaten the integrity of the fuel cladding which could further impact on the release of radioactive substances into the environment in an uncontrolled manner to endanger the safety of the reactor workers, the general public, and the environment. This study has the objective is to know is profile contour of fluid flow and the temperature distribution pattern of the cooling fluid is water (H2O) in convection in to SMR reactor with fuel sub reed arrangement of hexagonal in forced convection. In this study will be conducted simulations on the SMR reactor core used sub channel hexagonal using CFD (Computational Fluid Dynamics) code. And the results of this simulation look more upward (vector of fluid flow) fluid temperature will be warm because the heat moves from the wall to the fluid heater. Axial direction and also looks more fluid away from the heating element temperature will be lower.


Author(s):  
Leyland J. Allison ◽  
Lisa Grande ◽  
Sally Mikhael ◽  
Adrianexy Rodriguez Prado ◽  
Bryan Villamere ◽  
...  

SuperCritical Water-cooled nuclear Reactor (SCWR) options are one of the six reactor options identified in Generation IV International Forum (GIF). In these reactors the light-water coolant is pressurized to supercritical pressures (up to approximately 25 MPa). This allows the coolant to remain as a single-phase fluid even under supercritical temperatures (up to approximately 625°C). SCW Nuclear Power Plants (NPPs) are of such great interest, because their operating conditions allow for a significant increase in thermal efficiency when compared to that of modern conventional water-cooled NPPs. Direct-cycle SCW NPPs do not require the use of steam generators, steam dryers, etc. allowing for a simplified NPP design. This paper shows that new nuclear fuels such as Uranium Carbide (UC) and Uranium Dicarbide (UC2) are viable option for the SCWRs. It is believed they have great potential due to their higher thermal conductivity and corresponding to that lower fuel centerline temperature compared to those of conventional nuclear fuels such as uranium dioxide, thoria and MOX. Two conditions that must be met are: 1) keep the fuel centreline temperature below 1850°C (industry accepted limit), and 2) keep the sheath temperature below 850°C (design limit). These conditions ensure that SCWRs will operate efficiently and safely. It has been determined that Inconel-600 is a viable option for a sheath material. A generic SCWR fuel channel was considered with a 43-element bundle. Therefore, bulk-fluid, sheath and fuel centreline and HTC profiles were calculated along the heated length of a fuel channel.


Author(s):  
Kota Fujiwara ◽  
Yuki Nakamura ◽  
Kohei Yoshida ◽  
Akiko Kaneko ◽  
Yutaka Abe

Abstract Nuclear power plant (NPP) safety has become a public issue since the Fukushima daiichi NPP accident. In order to evaluate the risks caused by severe accidents (SAs), it is very important to understand the on-site source term events. One of the important unsolved source term events is the decontamination efficiency of fission products (FPs) in the suppression chamber by pool scrubbing. Therefore, a mechanistic model to analyze the particle decontamination efficiency by pool scrubbing is highly regarded. Despite the demand, particle decontamination mechanism by pool scrubbing has never been understood due to the complexity of phenomena. In our experiment, we aim to develop a reliable mechanistic model to evaluate particle decontamination efficiency of pool scrubbing by conducting separate effect tests. As to obtain the fundamental process of particle decontamination from gas to liquid-phase, we focused on decontamination factor (DF) of particle from a single bubble. However, it is very difficult to calculate the initial particle concentration inside the bubble. Therefore, in our experiment, we developed a method to measure the internal particle concentration inside the bubble by combining image processing and particle measurement. By using the experimental results, we succeeded to obtain reasonable DF for glycerin particles and CsI particles as a simulant particle for FPs. From the experimental results, detailed particle decontamination efficiency for various submergence were measured. The results tend show that DF increase linearly as submergence increases which suggests that DF is constant on bubble rise region. Moreover, the fact that glycerin particle with larger particle diameter takes a higher value shows that particle diameter significantly affects DF.


Author(s):  
Jaehyun Cho ◽  
Yong-Hoon Shin ◽  
Il Soon Hwang

Although the current Pressurized Water Reactors (PWRs) have significantly contributed to the global energy supply, PWRs have not been considered as a trustworthy energy solution owing to its several problems; spent nuclear fuels (SNFs), nuclear safety, and nuclear economy. In order to overcome these problems, lead-bismuth eutectic (LBE) fully passive cooling Small Modular Reactor (SMR) system is suggested. It is possible to not only provide the solution of the problem of SNFs through the transmutation feature of LBE coolant, but also increase the safety and economy through the concepts of the natural circulation cooling SMRs. It is necessary to maximize the advantages (safety and economy) of this type of Nuclear Power Plants for several applications in future. Accordingly, objective of the study is to maximize the reactor core power while the limitations of shipping size, materials endurance, long-burning criticality as well as safety under Beyond Design Basis Events must be satisfied. Design limitations of natural circulating LBE-cooling SMRs are researched and power maximization method is developed based on obtained design limitations. It is expected that the results are contributed to reactor design stage with providing several insights to designers as well as the methods for design optimization of other type of SMRs.


Author(s):  
Alberto Sáez-Maderuelo ◽  
María Luisa Ruiz-Lorenzo ◽  
Francisco Javier Perosanz ◽  
Patricie Halodová ◽  
Jan Prochazka ◽  
...  

Abstract Alloy 690, which was designed as a replacement for the Alloy 600, is widely used in the nuclear industry due to its optimum behavior to stress corrosion cracking (SCC) under nuclear reactor operating conditions. Because of this superior resistance, alloy 690 has been proposed as a candidate structural material for the Supercritical Water Reactor (SCWR), which is one of the designs of the next generation of nuclear power plants (Gen IV). In spite of this, striking results were found [1] when alloy 690 was tested without intergranular carbides. These results showed that, contrary to expectations, the crack growth rate is lower in samples without intergranular carbides than in samples with intergranular carbides. Therefore, the role of the carbides in the corrosion behavior of Alloy 690 is not yet well understood. Considering these observations, the aim of this work is to study the effect of intergranular carbides in the oxidation behavior (as a preliminary stage of degenerative processes SCC) of Alloy 690 in supercritical water (SCW) at two temperatures: 400 °C and 500 °C and 25 MPa. Oxide layers of selected specimens were studied by different techniques like Scanning Electron Microscope (SEM) and Auger Electron Spectroscopy (AES).


Sign in / Sign up

Export Citation Format

Share Document