scholarly journals Negative impact of heat stress on reproduction in cows: Animal husbandry and biotechnological viewpoints: A review

Author(s):  
Jiří Bezdíček ◽  
Andrea Nesvadbová ◽  
Alexander Makarevich ◽  
Elena Kubovičová

This review summarises current knowledge of the relationship between heat stress (HS) and reproduction in cattle. It focuses on research from the viewpoint of genetics (breed), from the viewpoint of reproduction physiology (in vivo and in vitro) and from the animal husbandry practice. From the viewpoint of animal husbandry, it was evidenced that heat stress influences reproduction before, during and after conception. Most publications suggest the negative impact of heat stress on the reproductive physiology of cows reflected in ovarian and follicular activity, in oocyte and embryo development, as well as in other processes studied under in vivo or in vitro conditions. There are also a number of products that the cell creates in response to heat stress, which is used as indicators of the stress (e.g. heat shock proteins). A number of publications also focus on how to prevent heat stress on the farm (e.g. shade, water shower) or during in vitro procedures, including the supplementation of the culture media with antioxidants like melatonin. Research of heat stress is very important in cattle breeding for preventing and reducing its effects on the farm and also in the context of climate changes and global atmospheric warming.

Author(s):  
Ekaterina M. Lenchenko ◽  
◽  
Dmitriy V. Stepanov ◽  
Dmitriy A. Blumenkrants ◽  
◽  
...  

The results of studies general patterns formation heterogeneous structure biofilms gram-negative and gram-positive bacteria, as well as yeast-like fungi Candida spp. are presented. Рrocesses intercellular communication of various systematic groups microorganisms has common morphological and functional patterns biofilm formation. Heteromorphic structures of biofilms united by the intercellular matrix have been revealed in natural, industrial, and clinical conditions, both in the body of mammals and birds, and in food products, devices and equipment, animal husbandry and food production technologies. Indication in a large number of microcolonies, as well as yeast and micellar phases in isolates from pathological material of animals, was a differential sign in local and systemic pathologies. Under the influence drugs on biofilms microorganisms, a direct correlation was established between morphometric and densitometric indicators, reflecting a decrease in the frequency occurrence clusters and optical density, respectively. Under the bacteriostatic effect of chemotherapeutic and disinfecting drugs, accumulations altered cells of spheroplastic type, capable forming stable and unstable L-forms, were revealed. For detection of viable microorganisms in a heterogeneous population microorganisms in vitro and in vivo, fluorescence microscopy and culture media with growth factors for the repair cell wall of L-forms bacteria are promising.


Author(s):  
Hao Yang ◽  
Yulong Zhao ◽  
Ning Chen ◽  
Yanpei Liu ◽  
Shaoyu Yang ◽  
...  

Abstract In plants, 3´,5´-cyclic adenosine monophosphate (cAMP) is an important second messenger with varied functions; however, only a few adenylyl cyclases (ACs) that synthesize cAMP have been identified. Moreover, the biological roles of ACs/cAMP in response to stress remain largely unclear. In this study, we used quantitative proteomics techniques to identify a maize heat-induced putative disease-resistance RPP13-like protein 3 (ZmRPP13-LK3), which has three conserved catalytic AC centres. The AC activity of ZmRPP13-LK3 was confirmed by in vitro enzyme activity analysis, in vivo RNAi experiments, and functional complementation in the E. coli cyaA mutant. ZmRPP13-LK3 is located in the mitochondria. The results of in vitro and in vivo experiments indicated that ZmRPP13-LK3 interacts with ZmABC2, a possible cAMP exporter. Under heat stress, the concentrations of ZmRPP13-LK3 and cAMP in the ABA-deficient mutant vp5 were significantly less than those in the wild-type, and treatment with ABA and an ABA inhibitor affected ZmRPP13-LK3 expression in the wild-type. Application of 8-Br-cAMP, a cAMP analogue, increased heat-induced expression of heat-shock proteins in wild-type plants and alleviated heat-activated oxidative stress. Taken together, our results indicate that ZmRPP13-LK3, a new AC, can catalyse ATP for the production of cAMP and may be involved in ABA-regulated heat resistance.


2020 ◽  
Vol 20 ◽  
Author(s):  
Nur Najmi Mohamad Anuar ◽  
Nurul Iman Natasya Zulkafali ◽  
Azizah Ugusman

: Matrix metalloproteinases (MMPs) are a group of zinc-dependent metallo-endopeptidase that are responsible towards the degradation, repair and remodelling of extracellular matrix components. MMPs play an important role in maintaining a normal physiological function and preventing diseases such as cancer and cardiovascular diseases. Natural products derived from plants have been used as traditional medicine for centuries. Its active compounds, such as catechin, resveratrol and quercetin, are suggested to play an important role as MMPs inhibitors, thereby opening new insights into their applications in many fields, such as pharmaceutical, cosmetic and food industries. This review summarises the current knowledge on plant-derived natural products with MMP-modulating activities. Most of the reviewed plant-derived products exhibit an inhibitory activity on MMPs. Amongst MMPs, MMP-2 and MMP-9 are the most studied. The expression of MMPs is inhibited through respective signalling pathways, such as MAPK, NF-κB and PI3 kinase pathways, which contribute to the reduction in cancer cell behaviours, such as proliferation and migration. Most studies have employed in vitro models, but a limited number of animal studies and clinical trials have been conducted. Even though plant-derived products show promising results in modulating MMPs, more in vivo studies and clinical trials are needed to support their therapeutic applications in the future.


2019 ◽  
Vol 14 (4) ◽  
pp. 305-319 ◽  
Author(s):  
Marietta Herrmann ◽  
Franz Jakob

The bone marrow hosts skeletal progenitor cells which have most widely been referred to as Mesenchymal Stem or Stromal Cells (MSCs), a heterogeneous population of adult stem cells possessing the potential for self-renewal and multilineage differentiation. A consensus agreement on minimal criteria has been suggested to define MSCs in vitro, including adhesion to plastic, expression of typical surface markers and the ability to differentiate towards the adipogenic, osteogenic and chondrogenic lineages but they are critically discussed since the differentiation capability of cells could not always be confirmed by stringent assays in vivo. However, these in vitro characteristics have led to the notion that progenitor cell populations, similar to MSCs in bone marrow, reside in various tissues. MSCs are in the focus of numerous (pre)clinical studies on tissue regeneration and repair.Recent advances in terms of genetic animal models enabled a couple of studies targeting skeletal progenitor cells in vivo. Accordingly, different skeletal progenitor cell populations could be identified by the expression of surface markers including nestin and leptin receptor. While there are still issues with the identity of, and the overlap between different cell populations, these studies suggested that specific microenvironments, referred to as niches, host and maintain skeletal progenitor cells in the bone marrow. Dynamic mutual interactions through biological and physical cues between niche constituting cells and niche inhabitants control dormancy, symmetric and asymmetric cell division and lineage commitment. Niche constituting cells, inhabitant cells and their extracellular matrix are subject to influences of aging and disease e.g. via cellular modulators. Protective niches can be hijacked and abused by metastasizing tumor cells, and may even be adapted via mutual education. Here, we summarize the current knowledge on bone marrow skeletal progenitor cell niches in physiology and pathophysiology. We discuss the plasticity and dynamics of bone marrow niches as well as future perspectives of targeting niches for therapeutic strategies.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 78
Author(s):  
Lachlan A. Bourke ◽  
Christina N. Zdenek ◽  
Edgar Neri-Castro ◽  
Melisa Bénard-Valle ◽  
Alejandro Alagón ◽  
...  

The toxin composition of snake venoms and, thus, their functional activity, can vary between and within species. Intraspecific venom variation across a species’ geographic range is a major concern for antivenom treatment of envenomations, particularly for countries like French Guiana that lack a locally produced antivenom. Bothrops asper and Bothrops atrox are the most medically significant species of snakes in Latin America, both producing a variety of clinical manifestations, including systemic bleeding. These pathophysiological actions are due to the activation by the venom of the blood clotting factors Factor X and prothrombin, thereby causing severe consumptive coagulopathy. Both species are extremely wide-ranging, and previous studies have shown their venoms to exhibit regional venom variation. In this study, we investigate the differential coagulotoxic effects on human plasma of six venoms (four B. asper and two B. atrox samples) from different geographic locations, spanning from Mexico to Peru. We assessed how the venom variation of these venom samples affects neutralisation by five regionally available antivenoms: Antivipmyn, Antivipmyn-Tri, PoliVal-ICP, Bothrofav, and Soro Antibotrópico (SAB). The results revealed both inter- and intraspecific variations in the clotting activity of the venoms. These variations in turn resulted in significant variation in antivenom efficacy against the coagulotoxic effects of these venoms. Due to variations in the venoms used in the antivenom production process, antivenoms differed in their species-specific or geographical neutralisation capacity. Some antivenoms (PoliVal-ICP, Bothrofav, and SAB) showed species-specific patterns of neutralisation, while another antivenom (Antivipmyn) showed geographic-specific patterns of neutralisation. This study adds to current knowledge of Bothrops venoms and also illustrates the importance of considering evolutionary biology when developing antivenoms. Therefore, these results have tangible, real-world implications by aiding evidence-based design of antivenoms for treatment of the envenomed patient. We stress that these in vitro studies must be backed by future in vivo studies and clinical trials before therapeutic guidelines are issued regarding specific antivenom use in a clinical setting.


2021 ◽  
Vol 22 (9) ◽  
pp. 4368
Author(s):  
Heriberto Rodriguez-Martinez ◽  
Emilio A. Martinez ◽  
Juan J. Calvete ◽  
Fernando J. Peña Vega ◽  
Jordi Roca

Seminal plasma (SP), the non-cellular component of semen, is a heterogeneous composite fluid built by secretions of the testis, the epididymis and the accessory sexual glands. Its composition, despite species-specific anatomical peculiarities, consistently contains inorganic ions, specific hormones, proteins and peptides, including cytokines and enzymes, cholesterol, DNA and RNA—the latter often protected within epididymis- or prostate-derived extracellular vesicles. It is beyond question that the SP participates in diverse aspects of sperm function pre-fertilization events. The SP also interacts with the various compartments of the tubular genital tract, triggering changes in gene function that prepares for an eventual successful pregnancy; thus, it ultimately modulates fertility. Despite these concepts, it is imperative to remember that SP-free spermatozoa (epididymal or washed ejaculated) are still fertile, so this review shall focus on the differences between the in vivo roles of the SP following semen deposition in the female and those regarding additions of SP on spermatozoa handled for artificial reproduction, including cryopreservation, from artificial insemination to in vitro fertilization. This review attempts, including our own results on model animal species, to critically summarize the current knowledge of the reproductive roles played by SP components, particularly in our own species, which is increasingly affected by infertility. The ultimate goal is to reconcile the delicate balance between the SP molecular concentration and their concerted effects after temporal exposure in vivo. We aim to appraise the functions of the SP components, their relevance as diagnostic biomarkers and their value as eventual additives to refine reproductive strategies, including biotechnologies, in livestock models and humans.


Sign in / Sign up

Export Citation Format

Share Document